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Abstract

The bacterium Xylella fastidiosa is mainly transmitted by the meadow
spittlebug Philaenus spumarius in Europe, where it has caused significant
economic damage to olive and almond trees. Understanding the factors
that determine disease dynamics in pathosystems that share similarities can
help to design control strategies focused on minimizing transmission chains.
Here, we introduce a compartmental model for X. fastidiosa-caused diseases
in Europe that accounts for the main relevant epidemiological processes,
including the seasonal dynamics of P. spumarius. The model was confronted
with epidemiological data from the two major outbreaks of X. fastidiosa in
Europe, the olive quick disease syndrome in Apulia, Italy, caused by the
subspecies pauca, and the almond leaf scorch disease in Mallorca, Spain,
caused by subspecies multiplex and fastidiosa. Using a Bayesian inference

framework, we show how the model successfully reproduces the general
field data in both diseases. In a global sensitivity analysis, the vector-to-plant
and plant-to-vector transmission rates, together with the vector removal
rate, were the most influential parameters in determining the time of the
infectious host population peak, the incidence peak, and the final number of
dead hosts. We also used our model to check different vector-based control
strategies, showing that a joint strategy focused on increasing the rate of
vector removal while lowering the number of annual newborn vectors is
optimal for disease control.
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Mathematical and computational modeling in ecology and, in
particular, epidemiology have been recently recognized as power-
ful approaches to guide empirical work and provide a framework
for the synthesis, analysis, and development of conservation plans
and policy-making (Chew et al. 2014; Levin 1992; Murray 1989;
Sarkar et al. 2006). Plant epidemics, mainly plant-virus diseases,
have often been described by compartmental models, which deal
with the overriding importance of transmission mechanisms in de-
termining epidemic dynamics (Jeger et al. 1998, 2004; Madden
et al. 2000). These models have contributed to providing answers
to some questions related to the ecology of plant diseases and have
led to direct applications in disease control while guiding research
directions (Jeger and Bragard 2019).

The emergence of vector-borne plant pathogens in new areas
causing huge economic impacts, such as Xylella fastidiosa and the
Candidatus Liberibacter spp. (Huanglongbing or citrus greening),
has sparked interest in modeling vector-transmitted plant-disease
epidemics (Chiyaka et al. 2012; Jeger and Bragard 2019). The
vector-borne bacterium X. fastidiosa is a multi-host pathogen en-
demic to the Americas that causes economically important diseases,
mostly in woody crops (Hopkins and Purcell 2002). X. fastid-
iosa is a genetically diverse species with three evolutionary well-
defined clades forming the pauca, fastidiosa, and multiplex sub-
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species, native to South, Central, and North America, respectively
(Vanhove et al. 2019). Within each subspecies, diverse genetic lin-
eages with different host ranges are found. X. fastidiosa is transmit-
ted nonspecifically by xylem-sap-feeding insects belonging to the
sharpshooter leafhoppers (Hemiptera: Cicadellidae, Cicadellinae)
and spittlebugs (Hemiptera: Cercopoidae) (Redak et al. 2004).

Recently, X. fastidiosa has gained renewed interest due to the
massive mortality of olive trees in Apulia, Italy (Saponari et al.
2019). The first focus of the olive quick decline syndrome (OQDS)
was detected in 2013 around Gallipoli (Apulia, Italy) (Saponari
et al. 2013) and since then has spread throughout the region by
the meadow spittlebug, Philaenus spumarius. Although this was
the first official detection of X. fastidiosa in Europe, it has recently
been demonstrated that the pathogen arrived much earlier in Corsica
(Soubeyrand et al. 2018) and in the Balearic islands (Moralejo et al.
2020). Around 1993, two strains of the subspecies fastidiosa (ST1)
and multiplex (ST81) were introduced from California to Mallorca
(Spain) with infected almond plants (Moralejo et al. 2020). To date,
over 80% of the almond trees in Mallorca show leaf scorch symp-
toms, and the outbreak has changed the iconic rural landscape of
this Mediterranean island (Olmo et al. 2021).

The meadow spittlebug, P. spumarius (Hemiptera: Aphrophori-
dae), has recently been shown to be the main vector of X. fastidiosa
in Europe, both in transmission experiments and in field studies
(Cornaraetal. 2017a,2018b; Lopez-Mercadal et al. 2022; Moralejo
et al. 2019; Saponari et al. 2019). P. spumarius is a polyphagous
species from the Palearctic region, presenting one generation per
year (univoltine) and overwintering as eggs. Foam-forming nymphs
emerge at the end of winter, feeding on herbaceous plants. The time
required for their development to the adult stage depends mainly
on temperature and humidity (Bodino et al. 2019; Chmiel and
Wilson 1979; Cornara et al. 2018a). In Mediterranean climates, P,
spumarius adults generally move from the herbaceous cover to the
crop canopy as evapotranspiration increases in late spring (May
to June). In mid-summer, the populations of P. spumarius tend
to decrease in the crop canopy, and the insects are captured more


https://doi.org/10.1094/PHYTO-11-22-0428-V
https://orcid.org/0000-0003-2796-6801
https://orcid.org/0000-0003-4927-9367
https://orcid.org/0000-0002-0370-1350
mailto:alex@ifisc.uib-csic.es
https://creativecommons.org/licenses/by-nc-nd/4.0/

frequently in trees and shrubs interspersed in crops. Summer dis-
persal of spittlebugs to wild hosts as refugees seems to be a common
general pattern in Mediterranean crops in Italy (Bodino et al. 2019;
Cornara et al. 2021) and Spain (Morente et al. 2018). Because the
bacterium has not been detected in spring on insects feeding on the
herbaceous cover or in weeds in Europe (Bodino et al. 2019; Cornara
etal. 2018a; Olmo et al. 2021), itis assumed that all spittlebug adults
acquire the bacteria from the main crop (olive, almond, vine, etc.).
Once infected, X. fastidiosa colonizes the insect foregut in a per-
sistent and non-circulatory manner without transovarial (parent to
offspring) or transstadial (inter-stage) transmission (Almeida and
Purcell 2003; Freitag 1951; Purcell and Finlay 1979) and without a
period latency after vector acquisition (Almeida and Nunney 1987;
Freitag 1951).

Several epidemic models have been already developed for
X. fastidiosa diseases, but they lack a realistic description of some
relevant processes (Jeger and Bragard 2019). Some of these models
assume a simple general form for infected host dynamics (Abboud
et al. 2019; Daugherty and Almeida 2019; White et al. 2017) or
use a simplified S-I compartmental scheme for hosts, disregarding
important features such as the latent period or the host mortality
rate (Soubeyrand et al. 2018). Models that do take these features
into account, however, do not explicitly model the population of
vectors responsible for disease transmission (White et al. 2020).
Other more recent models have taken a step further in explicitly
modeling the vector population (Brunetti et al. 2020; Giménez-
Romero et al. 2022b), but the characterization of its dynamics is
still relatively simple, as it overlooks the known seasonal patterns
of vector abundance. Several recent studies have provided new in-
sights into the ecology and temporal dynamics of the transmission of
X. fastidiosa by P. spumarius in olive plants (Bodino et al. 2019,
2021). However, these experimental data of the pathosystem have
not yet been integrated at the population level. Thus, there is a need
to continue advancing in the modeling of X. fastidiosa diseases by
developing more realistic models that can elucidate the fundamen-
tal processes involved in vector—host—pathogen interactions and
help to design effective control strategies.

In this work, we developed a deterministic continuous-time com-
partmental model to describe the general epidemiological dynamics
of diseases produced by X. fastidiosa in Europe. We explicitly
account for key biological aspects of the disease, including the
seasonal dynamics of its main vector, P. spumarius. Our model is
able to describe field data from the two major European outbreaks:
the OQDS in Apulia, Italy, caused by the subspecies pauca, and
the almond leaf scorch disease (ALSD) in Mallorca, Spain, caused
by subspecies multiplex and fastidiosa. We aimed to find the most
influential parameters in the model with respect to incidence and
mortality in both diseases by performing a global sensibility anal-
ysis. With this information, the next goal was to explore control
strategies acting especially on the vector population.

Materials and Methods

Epidemic model: The SEIR-V model

We developed a deterministic continuous-time compartmen-
tal model that incorporates the specific biological features of
X. fastidiosa diseases in Europe, including the dynamics of the
main relevant vector P. spumarius (Cavalieri et al. 2019). To build
the model, we took the following considerations: (i) We assumed
there is no winter recovery of infected hosts, and, thus, they die
sometime after infection; (ii) hosts show an asymptomatic period
in which they are noninfectious in practice (exposed compartment)
because the bacteria are not yet systemically extended (Stevenson
etal. 2004; Teviotdale and Connell 2003), whereas vectors are infec-
tious immediately after acquiring the bacterium (Fierro et al. 2019);
(iii) vectors have an annual life cycle without mother-to-offspring
disease transmission (Freitag 1951; Purcell and Finlay 1979), so we
considered the annual emergence of susceptible newborn vectors

and a constant death rate for both susceptible and infected vectors;
(iv) infected vectors carry the bacterium during their entire lifespan
without affecting their fitness; and finally, (v) we did not consider
host recruitment or natural death given that the typical development
time of X. fastidiosa epidemics is faster than the typical host’s life
cycle.

Altogether, our deterministic continuous-time compartmental
model consists of six compartments, four describing the host pop-
ulation (susceptible, Sy, exposed, Ey, infectious, Iy, and removed,
Ry), and two describing the vector population (susceptible, Sy,
and infected, Iy). The model is defined according to the following
processes:

Su +IV_B>EH + Iy, EH_K)IH’ IH_Y>RH
a n I (D

SV +IH—>IV +IH, SV—)@, [V_)Q)

which are illustrated in Figure 1, being the birth of new suscep-

tible vectors described as a source term. Thus, the host-vector

compartmental model is written as

Su = —BSul,/Nu
EH = BSul,/Ny — kEn

iH =kEy —vly
. )
Ry = vlu

$, = N(0) ) 8t —nT) — Syl /Nu — 1S,

n=1
117 = 0(SVIH/ZVH - Mlv

The model describes the exposure of susceptible hosts, Sy, at a
rate P through their interaction with infected vectors, I,, whereas
susceptible vectors, S,, get infected immediately at a rate o through
their interaction with infectious hosts /. Exposed hosts get infec-
tious at rate k, being the mean latent period tg = 1/k, whereas
infectious hosts die at rate y, having a mean infectious period of
1; = 1/vy. Infected vectors stay infected and infectious for the rest
of their lifetime. Regarding the seasonal dynamics of vectors, we
assume that new adults emerge synchronously each year in fields
being all susceptible. This is represented by the term v,(0) 22, 3¢ —nT)
in equation 2, where T = 1 year is the period and 8(+ — nT ) is Dirac
delta function and basically implements a yearly pulse of new vec-
tors at a certain moment in the year. Vectors are removed (die, move
to herbaceous vegetation and other non-host trees, exit the field, etc.)

e ~— = State change
S/U Iv e Interaction
/ \/ ———> Demographic
«
§(t — nT)N,(0) v

Fig. 1. Schematic representation of the model equation 2. Boxes are the com-
partments in which the population is divided, solid curved arrows represent
changes in state (i.e., transitions between compartments), dashed arrows de-
pict the crossed interaction between hosts and vectors, and solid straight arrows
represent demographic changes in vector population.
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at a given rate |, which we consider identical for susceptible and
infected vectors. For simplicity, we consider that the quantity of an-
nual newborn adults, N, (0), is constant. This outburst of new adults
followed by an exponential decay resembles the temporal patterns
on the abundance of P. spumarius observed in crop fields (Antonatos
etal. 2021; Beal et al. 2021; Cornara et al. 2017a; Lopez-Mercadal
et al. 2021) (Supplementary Fig. S1). )

_ In our model (equation 2) the crossed nonlinear terms in S and
Sy, Sgl,, and S,Iy are divided by the total host population, Ny.
Thus, the vector-to-plant infection process is modeled using mass
action incidence, which is density dependent, whereas the plant-
to-vector infection process is modeled using standard incidence,
which is frequency dependent (Martcheva 2015). This implies that
doubling the number of vectors in the crop field would double the
number of resulting exposed (or infected) hosts, as this process is
population-dependent (mass action incidence), whereas doubling
the number of hosts would not result in more vectors per unit area
being infected, as this process only depends on the contact prob-
ability, being frequency dependent (standard incidence). We think
this is the most reasonable assumption because, for a given planta-
tion framework, increasing the number of hosts is expected to also
increase the area of the field, whereas the number of vectors is an
independent quantity.

Basic reproductive number

The basic reproductive number, Ry, of the model cannot be triv-
ially computed using standard methods, such as the next-generation
matrix (Diekmann et al. 2010), as there is no pre-pandemic fixed
point in the system of differential equations (equation 2). For pe-
riodically varying vector populations, rigorous methods have been
developed (Bacaér 2007), but not for the case of growing or decay-
ing vector populations. Here, we use the simple method developed
in the work of Giménez-Romero et al. (2022a) (see Appendix
II), which effectively computes the average number of secondary
infections produced by an initially infectious individual in one gen-
eration. Thus, the effective basic reproductive number is given by

_ Ba Sy (O) N, (0)
ny N ourt

0 (1—e™) (3)
where t corresponds to the time length of one generation, in our
case 1 year. This Ry is calculated using the initial susceptible host
population, Sy (0). Below, we also use a time-dependent Ry (¢) using
Sy ().

Epidemiological data

Epidemiological data from an ALSD outbreak on the island
of Mallorca, Balearic Islands, Spain, were taken from Moralejo
et al. (2020). Dated phylogenetic analysis and estimates of dis-
ease incidence showed that the introduction of both subspecies
occurred around 1993, and 79% almond trees were infected in 2017
(Moralejo et al. 2020). The annual proportion of infected individ-
uals in the almond tree population between 1993 and 2017 was
estimated by analyzing through qPCR the presence of X. fastidiosa
DNA in the growth rings of 34 sampled trees (cf. Fig. 3 in Moralejo
et al. 2020). The disease progression curve was estimated with-
out distinguishing whether infections were caused by multiplex or
fastidiosa subspecies. In addition, a two-sided bootstrap confidence
interval for each data point was set using the SciPy bootstrap func-
tion in Python (Virtanen et al. 2020). On the other hand, epidemic
data for OQDS were retrieved from (White et al. 2020). The data
consisted of two to three yearly censuses of symptom prevalence in
17 olive groves infected with X. fastidiosa subsp. pauca in Apulia,
Italy, which were aggregated to fit our model as shown in Figure
4 in White et al. (2020). Because the compartments of our model
are not in one-to-one correspondence with those shown in the work
of White et al. (2020), we used the sum of the symptomatic and
desiccated infected trees in the dataset (Ig + Ip) to fit the sum of
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the infected and dead trees (I 4+ R) and the sum of susceptible and
asymptomatic hosts (S + I) to fit the sum of susceptible and ex-
posed hosts (S + E). The processed data used to fit the model can be
found in Giménez-Romero (2022), and the raw data can be found
in the supplementary data accessible online of the cited articles
Moralejo et al. (2020) and White et al. (2020).

Model fitting through Bayesian inference

We employed an informative normal ~/([1, 8%) prior distribution,
with |1 and o, the mean and standard deviation, respectively, for
previously measured parameters in the literature, such as the in-
fectious and latent periods for ALSD, t; ~ ~(14,4), tg ~ N (4, 1)
(Moralejo et al. 2020; Teviotdale and Connell 2003) and OQDS,
T ~N(@3.5, 1), g ~ N(1.75,0.5) (Fierro et al. 2019). The corre-
sponding rates are given by y = 1/1; and k = 1/1g, respectively.
Similarly, a prior normal distribution was used for the removal
rate of vectors, i ~ A(0.02, 0.0075), as the mean value . = 0.02
already captures the vector dynamics observed in field data (Supple-
mentary Fig. S1). Regarding the prior distribution for the transmis-
sion rates, a very wide and uninformative uniform prior distribution,
B ~u(0.001, 1) and o ~ «(0.001, 1), was used for each parameter.
The number of hosts, Ny, was already provided in the datasets, but,
given the lack of information about the vector population, we as-
sumed N, (0) = Ny /2 for the initial vector population of each year.
However, we tested the robustness of our results by changing N,,(0).

The posterior distributions of the parameters were approximated
using the Markov chain Monte Carlo algorithm No U-Turn Sam-
pler (NUTS) with the recommended target acceptance rate of 65%
(Homan and Gelman 2014). To ensure a proper convergence, we
constructed three independent Markov chains with 10° iterations
each after a burn-in of 10* iterations and checked that the re-
sults were statistically equivalent. For each chain, we started at
the maximum-likelihood parameters yielded by the Nelder-Mead
algorithm with 1,000 iterations.

The parameters of our compartmental model were determined
by fitting the model to data by means of a Bayesian inference
framework using the Turing.jl package (Ge et al. 2018) in Julia
(Bezanson et al. 2017). The scripts used to fit the model can be
found in Giménez-Romero (2022).

Sensitivity analysis

We performed a global sensitivity analysis (GSA) (Saltelli et al.
2004) of the model to assess the relative contribution of its param-
eters and their interactions with different features of the epidemic.
In contrast to a local sensitivity analysis (LSA), a GSA assesses the
influence of a large domain of the parameter space in the desired out-
puts of the model. We performed GSA by means of a variance-based
analysis, the Sobol method (Sobol 2001). This particular method
provides information not only on how a particular parameter alone
influences the model outputs (as happens with LSA), but also due to
the nonlinear interactions among two or more parameters. Briefly,
the method considers the model output, Y, as a general function of
the inputs, f(xi, ..., x,), so that the variance of the output, Var(Y)
is decomposed as the sum of the variances given by the variations
of the parameters alone and its interactions,

n n
Var(Y) =) Var(f(i) + ) Var(f (. xp) + -
i=1 i<j
This information is organized in what are known as Sobol indices.
The total order indices are a measure of the total variance of the out-
put quantity caused by variations of the input parameter and its in-
teractions, St = Var(f(xy, ..., x,))/Var(Y). First-order (or “main
effect”) indices are a measure of the contribution to the output vari-
ance given by the variation of the parameter alone but averaged over
the variations in other input parameters, S; = Var(f(x;))/Var(Y).
Second-order indices consider first-order interactions between
parameters, S;; = Var(f(x;, x;))/Var(Y). Further indices can be



obtained describing the influence of higher-order interactions be-
tween parameters, but these are not going to be considered.
Following the Sobol method, we analyzed the variation of the
time at which the infectious population peaks, f,.q, the magni-
tude of this peak, /peq and the final number of dead hosts, R,
relative to variations of the model parameters. The method was
implemented within the Julia high-level programming language
(Bezanson et al. 2017) using the sub-package DiffEqSensitivity.jl
in the DifferentialEquations.jl package (Rackauckas and Nie 2017).

Results

Model fit and parameter estimates

The posterior distributions of the fitted parameters, including
their estimated mean and median for ALSD and OQDS, are shown
in Figures 2 and 3, respectively, together with the assumed prior dis-
tributions. We observe that the literature-driven priors for the latent
and infectious period, Ttz and t;, were already very good guesses
and changed slightly, converging to the appropriate distribution that
better fitted the epidemic data for both ALSD and OQDS (Figs. 2A
and B and 3A and B). Similarly, the prior for the vector removal
rate, |, obtained from field data, was good enough so that little
changes were needed for convergence (Figs. 2C and 3C). On the
other hand, we also observe that the completely uninformative pri-
ors for the transmission rates successfully converged to the posterior
distributions (Figs. 2D and E and 3D and E).

The latter distributions are far from a Gaussian-like shape (note
that the x axis is log-scaled), being heavy-tailed. This kind of distri-
bution highly distorts the statistical measures of mean, median, and
standard error, indicating that the estimates for transmission rates

—— Prior

I Posterior

—— Mean  ---

are not as robust as the estimates for the other parameters. These
rather uninformative distributions most probably arise because of
the lack of data about the vector, that is, S, (¢) and /,(¢), to constrain
the fits. In essence, many combinations of o and f can similarly
fit the host data while yielding quite different time series for S, (¢)
and /,(¢), which cannot be contrasted due to the lack of field data.
Nevertheless, the obtained best-fit mean and median parameters,
although quite different, are able to perfectly fit the data (Fig. 4).
Finally, we also observe that the variance for the field data also
converged to a bell-shaped distribution.

Mean and median parameter estimates (i.e., the best-fit parameter
values for ALSD and OQDS) are summarized in Tables 1 and 2,
respectively. As already seen from the posterior distributions, the
best-fit values for tg, t;, and p are close to the ones given by
literature and field data for both diseases. Conversely, o and f are
rather uninformative, as their 95% confidence intervals cover almost
two orders of magnitude. This again indicates that without some data
about the evolution of the vector states in time, S, (f) and I, (¢), it is
nearly impossible to derive the proper values for these parameters.

Overall, the data fall within the 99% confidence limits of the fitted
model for both the ALSD and OQDS outbreaks (Fig. 4B and D).
We also computed the instantaneous reproductive number, Ry(?),
by using equation 3 with Sy (¢) instead of only Sy (0) along the
simulation. Notably, Ry(¢) = 1 coincides with the stopping of new
infections being produced; that is, the number of exposed hosts does
not increase (Fig. 4A to C). This supports our approximate method
for computing the reproductive number for X. fastidiosa diseases
(Appendix II, equation iii). Due to the different time scales of both
epidemics (t}L5P + 14150 > IIOQDS + rgQDS), the OQDS outbreak
dies out earlier than the one for ALSD.

Median

u [day™!]

10! 1073

1072

a [day~!]

1072

10! 100 800 005 o0.10 015

0-2

0.20 0.25

B [ #hosts ]
#vector- day

Fig. 2. Posterior (blue histograms) and prior (red line) distributions of the model parameters for almond leaf scorch disease. Solid and dashed black lines correspond
to the mean and median of the posterior distributions. A, Host infectious period t; = 1/y. B, Host latent period 1z = 1/k. C, Vector removal rate p. D, Vector
infection rate a. E, Host infection rate p. F, The variance of the field data o2
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We notice that for ALSD, a large proportion of the vector popu-
lation gets infected every year (Fig. 4A), whereas a very small pro-
portion is needed in OQDS to produce a lethal outbreak (Fig. 4C).
However, this last statement is rather unrealistic, as around 50%
of the vectors that are captured in Apulia are indeed infected by
X. fastidiosa (Cavalieri et al. 2019; Cornara et al. 2017b). Thus,
the evolution of the infected vector population should be qualita-
tively similar to that obtained for ALSD (Fig. 4C). As previously
explained, different suitable combinations of o and § parameters
should give rise to similar progression curves for the hosts and
different ones for the vectors, but the realistic values for these pa-
rameters cannot be obtained from the Bayesian fit due to the lack
of data of the vector states, S, (¢), 1,(t).

Nevertheless, by manually exploring other values for o and
parameters, we can obtain a more biologically plausible scenario
for the OQDS that is still able to fit the available data for the hosts.
Figure 5A shows a simulation of the model with previously inferred
best-fit median parameters for OQDS. By changing the values of o
and P, we obtain a more realistic scenario in which around a 50% of
the vector population getting infected during the outbreak (Fig. 5B)
(Cavalieri et al. 2019; Cornara et al. 2017b). Noteworthy, the §

value obtained in this way is almost identical to the transmis-
sion rate recently reported by Bodino et al. (2021) for OQDS.
This change in the transmission parameters only affects the pro-
gression curve of the infected vector population, the progression
of the host compartments being practically unchanged (Fig. 5C).
Anyway, both sets of parameter values for o and f can properly
fit the field data, corresponding exclusively to the host population
(Fig. 5D).

The model adjusted to the progression curves of both diseases
indicates that the transmission rate o must be greater than § when
the proportion of infected vectors is relatively high (>30%). We
checked if the relationship between a and B held when changing
the assumed N, (0) = Ny /2, obtaining that it kept approximately
the same for very different values of the initial vector population.

Global sensitivity analysis

We computed the sensitivity indices for the model parameters
with respect to the more relevant quantities of interest, namely,
the time at which the number of infectious hosts is maximal,
Ipeak, the maximum number of infectious hosts, I and the
final number of dead hosts, R. The results were obtained exploring

I Posterior —— Prior —— Mean ---- Median
80
1.2
1.0 601
50 5
o 0.6 a 40
0.4 201
0.2

10 0.0

E

u [day™!]

0.30 30
0.25 251
0.20 20
L L L
a) 0 0.15 0 151
o a a
0.10 101
50 0.05 5
0,

0.00:

8.00 0.05

107> 1074 1073 1072 1072 101 10° 10! 0.10 0.15 0.20 0.25
1 #hosts 2
a [da __#hosts _
[ y ] B [#vector- day] o

Fig. 3. Posterior (blue histograms) and prior (red line) distributions of the model parameters for olive quick decline syndrome (OQDS). Solid and dashed black lines
correspond to the mean and median of the posterior distributions. A, Host infectious period t; = 1/y. B, Host latent period tz = 1/k. C, Vector removal rate .
D, Vector infection rate a. E, Host infection rate p. F, Variance of the field data o2.

TABLE 1. Estimated epidemiological parameters from Bayesian model fitting to the disease progression curve of almond leaf scorch disease in Mallorca

Parameter Definition Units Posterior mean Posterior median 95% confidence interval
1 Host infectious period Year 13.84 13.82 [7.12, 20.47]

1E Host latent period Year 4.46 4.47 [2.88, 5.99]

B Host infection rate W:Z’;%@ 0.062 0.02 [0.0061, 0.3013]

o Vector infection rate Day~ 0.15 0.086 [0.0047, 0.54]

n Vector removal rate Day’1 0.0222 0.0221 [0.015, 0.030]

Ro Basic reproductive number - 133 25 -
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the parameter space constrained to the intervals { € (0.001, 0.1), Epidemic control through vector management

w e 3,7),1 €(5725),a€(0.001,1), n € (0.01,0.04)} using The sensitivity analysis clearly indicates that acting on o, , and

10* Quasi-Monte Carlo samples and are summarized in Figure 6. W is the best strategy to lower disease incidence and mortality. How-
Parameters o, B, and p are the most influential with regard to ever, controlling transmission rates is cumbersome, so a different

the time at which the infectious host population peaks, fpex, the control strategy based only on vector control is considered in this

magnitude of the peak, I,.q, and the final number of dead hosts, section. In our model, there are two ways of implementing vector-
Roo. The total output variance (total order indices) cannot be ex- population control: (i) decreasing the typical time, 1/, that vectors
plained by the variances of the parameters alone (first-order indices) spend between crops each year by some mechanism (thus increas-
(Fig. 6). Therefore, higher-order interactions among the parameters ing p) and (ii) reducing the initial number of vectors that invade
importantly affect the sensitivity of the quantities under study. In- crops each year (e.g., lowering N,(0) via egg or nymph control)
deed, the contribution to the total output variance of y and k for #eax (Lago et al. 2023).

and R, come notably from higher-order interactions. This can be We analyzed the effect of vector management by simulating epi-
checked in panels B, D, and F of Figure 6, in which the contribution demic outbreaks using different values of w and N, (0) and keeping
to the output variance from interactions between pairs of parame- the rest of parameters as fitted for both ALSD and OQDS outbreaks
ters (second-order indices) is represented. Interactions among the (Fig. 7). In both epidemics, decreasing the presence time, as well

parameters contribute to increasing the output variance with respect as the number of vectors, contributes to controlling the epidemic by
tO fpeak and Ipeqr, whereas the effect is more heterogeneous in the lowering Ry and, consequently, the final size of the epidemic, R.
case of Ry,. In particular, the interactions between o —  and o — Furthermore, we observe that decreasing vector presence is more
produce the main contributions to the increase of output variance efficient than decreasing its annual initial population; that is, we fur-
in all cases, whereas k — p, k — o and k —  interactions decrease ther reduce R, the final size of the epidemic, by applying a similar
the output variance. reduction in the residence time 1/j. This could also be anticipated

Fig. 4. A, Simulation of the model with the
best-fit parameters for almond leaf scorch
disease (ALSD). B, Model fit to field

data by means of the mean and median 1.0 1.04
values of the posterior distributions of the \\ — S =

parameters for ALSD. C, Simulation of 0.8 Ey — Ry .
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olive quick decline syndrome (OQDS).
D, Model fit to field data by means of the
mean and median values of the posterior
distributions of the parameters for OQDS.
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the 99% confidence interval. The error

0.6

I
>

0.4

— Mean

bars for the field data correspond to their 0.2 0.2 )
95% confidence intervals obtained with a h == Median
bootstrapping technique. - :\.{:‘\i‘\\i\\;;‘:\:\ 99% ClI

0.0+

o
o

Proportion of population >

0 5 1‘9 15 20 25 30 35
Time [years]

0 5 1‘9 15 20 25 30 35
Time [years]

Proportion of affected trees

S : S
1.04 1.0
= — S =
L) Ey =—— Ry o
30.87 77777 I, _ L Ro(t)=1 8-0.87
o o
0 0.6 Q. 0.6 -_— S+ E
Y— Y—
c 0.44 C 0.4 99% CI
o °
+— )
02 C 0.2
5 o) 0.2
o o
e 0.04 8 0.04
o o

0 2 4.6 8 10 12 14 16 0 2 4.6 8 10 12 14 16
Time [years] Time [years]

TABLE 2. Estimated epidemiological parameters from Bayesian model fitting to the disease progression curve of olive quick decline syndrome in Apulia

Parameter Definition Units Posterior mean Posterior median 95% confidence interval
T Host infectious period Year 3.61 3.60 [2.06, 5.20]

g Host latent period Year 1.24 1.25 [0.70, 1.75]

B Host infection rate % 3.44 2.60 [0.55, 8.79]

o Vector infection rate Day ! 0.0031 0.0022 [0.0005, 0.0084]

m Vector removal rate Day’1 0.0240 0.0240 [0.014, 0.035]

Ry Basic reproductive number - 33 21 -

Vol. 113, No. 9, 2023 1691



as Ry depending quadratically on 1/ but only linearly on N, (0)
(equation 3). However, the minimal intervention strategy, starting
from the current situation in the (1/1, N,(0)) parameter space that
yields an absolute control of the epidemic, Ry < 1, involves a mixed
strategy of lowering both 1/ and N, (0).

Discussion

In this work, we developed a deterministic continuous-time com-
partmental model for X. fastidiosa vector-borne diseases in Europe.
The model attempts to characterize the main biotic processes that
lead to the development of epidemics, including the seasonal dy-
namics of the main vector, P. spumarius. We show how the model
is sufficiently general to represent with some accuracy the pa-
rameters that determine the ALSD in Mallorca (Spain) and the
OQDS in Apulia (Italy), both transmitted by P. spumarius. To our
best knowledge, this is the first mathematical model describing
X. fastidiosa epidemics that considers the temporal pattern of vec-
tor abundance observed in field data, faithfully representing the
known biological information about the pathosystem. It includes
a dynamic approximation of the non-stationary populations of
P. spumarius, mathematically represented by a sporadic source term
through which vectors are born every year, and an exponential de-
cay term. Due to the non-stationarity of the vector dynamics, Ry
in the model cannot be computed with standard methods such as
the next-generation matrix (Diekmann et al. 2010). To circumvent
this problem, we applied an approximate method to compute it as
previously proposed by (Giménez-Romero et al. 2022a). We show
that this approximate R, correctly characterizes the epidemic, fur-
ther validating the method proposed by Giménez-Romero et al.
(2022a).

Fig. 5. A, Simulation of the model with the

Nonlinear mathematical models of disease transmission enhance
our understanding of the different mechanisms operating in an epi-
demic, especially compared with correlative or machine learning
methods, often very useful in practice but offering very little un-
derstanding. A key aspect to render these models useful is the
determination of the parameters from available data. If this step
can be properly performed, these models become very predictive
and especially helpful to design disease control strategies. How-
ever, an appropriate calibration of the model relies on access to
good-quality field data, which is often the bottleneck for the appli-
cation of this kind of model. In the present study, the parameters
were obtained using a Bayesian inference framework, which relies
on probability distributions rather than point-like measures. This
way, mean or median values can be considered together with their
confidence intervals able to characterize the robustness of the ob-
tained parameters. In general, we obtained different values of the
parameters for the ALSD and OQDS outbreaks in Mallorca and
Apulia, respectively. The fitted values, however, are in good agree-
ment with previous field-based measures for each disease, whereas
the differences observed between both outbreaks may reflect dif-
ferences between the X. fastidiosa subspecies and crops involved
(deciduous versus evergreen).

One of the conclusions of the study is that the available data for
both diseases is not enough to obtain robust estimates for all of
the model parameters. The lack of data about the vector popula-
tion compartments yields many possible values for the parameters
that regulate transmission, o and 8, provided that the progression of
the host compartments correctly fits the field data. In other words,
very infectious vectors (high p) that hardly ever get infected (low
a) can produce a similar outbreak within the host population to that
produced by very low infectious vectors (low ) that get infected
very often (high ). The great difference in these situations would be
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that, in the former, the infected vector population would be very low,
whereas in the latter, it would be quite high. This is a manifestation
of parameter unidentifiability from the fit (Chowell 2017; Roosa
and Chowell 2019), which stresses the importance of transmission
and calls for detailed measurements of the vector population, and
not just of the hosts. Furthermore, to compare transmission rates
between different diseases caused by X. fastidiosa (e.g., B, o), it is
necessary to know the vector-host population ratio of the pathosys-
tem (N, /Ny ) because f is expressed as a number of hosts per vectors
per day. Although, in general, populations of P. spumarius in the
canopy of olive trees are much larger than those found in the almond
trees of the Balearic Islands during the months of July and August
(Lépez-Mercadal et al. 2021), our work is based on data from stud-
ies in which information of the vector populations is not provided.
Without this information, therefore, conclusive results regarding
transmission cannot be obtained.

In any case, our model shows that the vector-to-plant transmis-
sion process, mediated by f, is somehow different from that from
the plant-to-vector one, mediated by a. In essence, § must be smaller
than « in order to reproduce the observed outbreaks and have a suf-
ficiently large vector population getting infectious, this fact being
independent of the particular choice of N, (0)/Np. This heterogene-

ity can be caused by several factors: differences in the efficiency of
plant-to-vector transmission with respect to vector-to-plant trans-
mission, differences in contactrates (i.e., susceptible vectors contact
trees at a different rate than infected vectors), vector feeding prefer-
ences (i.e., differences in the probability of contacting a susceptible
host compared to an infectious host), and so on. Indeed, our math-
ematical model assumes constant contact rates with no preferences
over any host state, so that under these assumptions, it indicates that
the probability of effectively transmitting the pathogen from plant
to vector is greater than from vector to plant.

However, this interpretation is subject to this particular assump-
tion, so that to fully disentangle this question, experimental work
in the form of transmission assays should be performed. Further-
more, we found that the timing and magnitude of the infectious host
peak and the final number of dead hosts are mostly controlled by the
vector-to-plant transmission rate, , the plant-to-vector transmission
rate, o, and the vector removal rate, . Because these parameters are
strongly related to the vector, the analysis makes clear that enhanc-
ing the knowledge about the vector, as well as obtaining precise
data, is crucial to improve the modeling of X. fastidiosa diseases
and poses important questions to be solved in specifically designed
experiments.

Fig. 6. Global sensitivity analysis of the A B
model parameters performed with the EEE Total order WM First order Second order
Sobol method with respect to A and B, the %
time at which the infectious population 2
peaks, 741 ; C and D, the magnitude of this ": 0.10
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The fact that the most influential parameters of the model are
those related to the vector can be used to design appropriate disease
control strategies. Because acting on transmission rates is rather
cumbersome, we argue that control strategies should focus on reduc-
ing the vector population in crop fields. In our model, this depends
on two parameters: |L, the rate at which vectors die (or move to
herbaceous vegetation and other non-host trees or exit the field)
and N, (0), the number of newborn susceptible vectors every year
(assumed constant in this study). Our results show that a mixed strat-
egy acting on both parameters is optimal to lower disease prevalence
and, eventually, eradicate the disease. Interestingly, we also show
that acting on the vector removal p is more effective than controlling
the newborn vector population N, (0). In fact, most control strate-
gies carried out in practice for X. fastidiosa diseases focus on the
latter factor, reducing N, (0) via egg or nymph control (Cornara et al.
2018b; Lago et al. 2023; Lopez-Mercadal et al. 2022). However, our
results indicate that alternative strategies based on increasing the
removal (or dispersal) rate of vectors should be explored. Further-
more, the evolution of the population compartments of the hosts and
vectors provides relevant information on the epidemiology of both
diseases. In both cases, the newly defined basic reproductive num-
ber that accounts for a decaying vector population is very predictive
of the moment in which new infections are not produced anymore,
coinciding approximately with the peak of infectious hosts. There-
fore, any intervention with control measures after this peak would
have marginal effects on future disease progression.

Our mathematical model is still rather simple, implementing only
a few relevant epidemic processes in contrast to the high complex-
ity of the pathogen—vector—host interactions occurring in plant
epidemics. Indeed, the model itself raises some questions about
these interactions, for example, whether or not contact rates are ho-
mogeneous. Another simplification of the model is the fact that the
spatial constraints and the intrinsic stochasticity of the transmission
processes are neglected. A straightforward extension of the model
would be to include a specific spatial setting and implement the
explicit motion of the vector within a stochastic framework, such as
individual-based models (Grimm and Railsback 2005). With this,
the effectiveness of current and further control strategies could be
tested and improve controlling for the motion of the vector. For in-
stance, the control strategy based on the removal of symptomatic
trees together with their surrounding trees at a given distance could
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be implemented in the model, the current effectiveness could be
evaluated according to the present protocols, and improved pa-
rameters could even be provided to be implemented in the field.
Of course, implementing a model in which the spatial degrees of
freedom are explicitly represented would require access to further
information about vector mobility and spatially resolved data to
confront the model, which is not currently available.
Mathematical models tested against experimental data increase
our understanding of the system under study. They also help to iden-
tify critical parameters that require better prior information to adjust
functions relating to different variables and make the model predic-
tions more accurate to suggest and test control strategies (Cunniffe
et al. 2015; Jeger et al. 2018). Our mathematical model suggests
a certain lack of knowledge of the transmission processes and re-
veals that the currently available data are not enough to fit complex
models dealing with the explicit dynamics of the vector population.

Appendix |

Vector population dynamics

Supplementary Figure S1 shows a time series for the population
of Philaenus spumarius in Mallorca, taken from Lépez-Mercadal
et al. (2021) (in blue). Superimposed (in orange) is the assumption
used in our model equation 2, the 3(t — nT'); that is, every year,
susceptible vectors appear in the system.

Appendix Il

Determination of R,

The handicap of determining the basic reproductive number of
the model equation 2 is that the pre-pandemic fixed point given by
Iy =1, =0 and Sy = Sy (0) is not a fixed point of the system of
differential equations because the vector population decays, so the
standard methods to compute Ry, such as the next-generation ma-
trix (Diekmann et al. 2010; Giménez-Romero et al. 2022a) do not
apply. In Giménez-Romero et al. (2022a), a method was suggested
to determine the basic reproductive number in the case of com-
partmental models of vector-borne transmitted diseases in which
the vector population grows or decays. It consists of averaging
the instantaneous basic reproductive number over the time of a
generation.

W

10°
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Ro=1
Current situation
Nearest Disease-Free situation

Proportion of vectors

10-2/ ,
0 100 10! 107
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Fig. 7. Epidemic control through vector management for A, almond leaf scorch disease in Mallorca and B, olive quick decline syndrome in Apulia. The white dashed
line denotes Ry = 1, and the white diamond corresponds to the parameter values of the fitted model. The white star is the closest disease-free state to the current

situation in this representation.
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To proceed, we consider that Iy = I, = 0, Sy = Sy(0) is indeed

a fixed point of the system. Then, the basic reproductive number
could be determined (e.g., as shown in Brauer et al. 2016). First, an
infectious host infects vectors at a rate of $Sy (0) /Ny foratime 1/vy.
This produces BSy (0)/yNy infected vectors. The second stage is
that these infectious vectors infect hosts at a rate of a/V, (0) /Ny for
a time 1/p, producing aN, /Ny infectious hosts per vector. The
net result of these two stages is
o _ OB Su )

Ty N

This result coincides with the value of R, obtained using the stan-
dard next-generation matrix method that can be applied in this case
because we are assuming that we use a nongeneric initial condition
that sits at the fixed point of the model.

In practice, our initial condition will never be a fixed point of
the model, and, as mentioned above, we will obtain an approximate
basic reproductive number, which we will refer to as Ry using the
method suggested in Giménez-Romero et al. (2022a) that consists
of calculating the average number of secondary infections pro-
duced by an infectious host in one generation. One first defines
an instantaneous basic reproductive number,

; o Sy (0)
Rf))(t)zﬁ— L
wy Ny

N, (0) =Rg - N, (0) ®

N, (t) = RGN, () (i1)
from which the average is simply computed as

Ry = <Rg)(’)>|; = Ry Ny = Ri 1 fy Nu()dr (iii)

In our model, the time-dependent vector population can be
obtained from equation 2,

Nv =Sv+iv = _U‘NV =N, (t) =N, (O)e—W (IV)

and introducing this expression for N, (¢) in equation iii, the integral
can be solved,
Basy (0) N,(0)
Ro=——15>—
WyNg  ut

N,(0)

(1—e) =R

(1—e™) ()

which is an approximated expression to the basic reproductive
number for our model in which the vector population is nonsta-
tionary, where, in equation ii and equation v, it has been defined,
R = (BaSu(0))/(WyN7).

Note that in our model, one generation corresponds to 1 year, and
N, (0) is reset every year.
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