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Since the last century, deterministic compartmental models have emerged as powerful tools to predict and
control epidemic outbreaks, in many cases helping to mitigate their impacts. A key quantity for these models
is the so-called basic reproduction number, R0, that measures the number of secondary infections produced by
an initial infected individual in a fully susceptible population. Some methods have been developed to allow
the direct computation of this quantity provided that some conditions are fulfilled, such that the model has a
prepandemic disease-free equilibrium state. This condition is fulfilled only when the populations are stationary.
In the case of vector-borne diseases, this implies that the vector birth and death rates need to be balanced. This
is not fulfilled in many realistic cases in which the vector population grows or decreases. Here we develop a
vector-borne epidemic model with growing and decaying vector populations that in the long term converge to
an asymptotic stationary state, and study the conditions under which the standard methods to compute R0 work
and discuss an alternative when they fail. We also show that growing vector populations produce a delay in
the epidemic dynamics when compared to the case of the stationary vector population. Finally, we discuss the
conditions under which the model can be reduced to the Susceptible, Infectious, and/or Recovered (SIR) model
with fewer compartments and parameters, which helps in solving the problem of parameter unidentifiability of
many vector-borne epidemic models.
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I. INTRODUCTION

Vector-borne diseases are caused by infectious agents
transmitted by living organisms, called vectors, frequently
insects. These diseases represent a significant threat to global
human health [1], causing diseases such as malaria, dengue,
yellow fever, Zika, trypanosomiasis, and leishmaniasis [2].
Vector-borne human diseases are responsible of more than
17% of all human infectious diseases, causing millions of
cases and more than 700 000 deaths annually [3]. Moreover,
crop production and farm profitability are also affected by
bacterial [4] and viral [5] vector-borne diseases. Some ex-
amples are the Pierce’s disease of grapevines, which has
resulted in an annual cost of approximately $100 million
in California alone [6], the olive quick decline syndrome,
which could cause about US$5 and US$17 billion of losses
in Italy and Spain over the next 50 years in the absence
of disease control measures [7], and the multiple diseases
caused by viruses [8], with diseases like tobacco mosaic,
tomato spotted wilt, etc., transmitted by aphids and other
vectors.

Compartmental deterministic models, e.g., the well-known
Susceptible, Infectious, and/or Recovered (SIR) model [9],
have been widely used in the modeling of vector-borne dis-
eases after the seminal work of Ross and Macdonald [10],
which opened the way to controlling malaria outbreaks by
acting on the vectors of the disease (the Anopheles mosquito).
These models consider that both host and vector populations

can be divided into different compartments describing dif-
ferent states of the individuals, such as susceptible, infected,
or removed (recovered or dead) [11], and the time evolution
of these compartments is expressed as a system of ordinary
differential equations, defining a dynamical system. Compart-
mental models provide a mean-field description that imply
well-mixed (in practice spatially homogeneous) populations.
The well-mixed approximation will be valid whenever the
mean distance among hosts is smaller than the mixing length
of vectors before they die. In the case of vector-borne diseases
it is also equivalent to every vector effectively interacting with
all the hosts and every host with all the vectors. A mean-field
description is not always valid in spatially extended systems,
but still it is often the first step before writing a spatially
explicit description.

The most relevant piece of information about a disease
is whether an epidemic outbreak will take place or not. The
basic reproduction number, R0, measures the number of sec-
ondary infections caused by an initial infected individual in
a fully susceptible population, defining the epidemic thresh-
old [12,13], that determines the emergence (or not) of an
outbreak. If R0 > 1 an epidemic outbreak will occur, while
there will be no outbreak otherwise. The standard way of
computing R0 in deterministic compartmental models is based
on the existence of an initial disease-free (prepandemic) equi-
librium, represented by the absence of infected hosts and
vectors [14,15]. Some standard methods based on the linear
stability condition of this equilibrium have been developed
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to allow the direct computation of R0, such as the next-
generation matrix (NGM) method [16].

In the case of vector-borne diseases, some models assume
that populations (both hosts and vectors) do not change with
time (see, e.g., [10,17,18]), thus assuming equal birth and
death rates. This guarantees the existence of a disease-free
equilibrium and the proper use of standard methods to deter-
mine R0. However, this assumption could be far from reality
in several pathosystems. For example, the interaction between
temperature, precipitation variations, and other factors may
lead to strong variations in the vector population [19,20],
implying that the prepandemic state may not be an equilibrium
state and that standard methods cannot be applied.

Compartmental models of vector-borne diseases have an-
other feature that may hinder their practical applicability,
namely the fact that these models have many compartments,
which describe the different states of both hosts and vectors,
and as a consequence a relatively large number of parameters.
This may lead to an issue known as parameter identifiability
and uncertainty [21], depending on the available data, that
is more likely to be found in models with many compart-
ments and parameters [22]. Usually, parameter estimation
procedures are needed to connect the models with disease
data, mainly using incidence or prevalence over time in the
host population. Unfortunately, under many circumstances the
underlying model parameters are unidentifiable, so that many
different sets of parameter values produce the same model
fit [23]. Moreover, these parameters can be really difficult to
determine from the available experimental data. Nevertheless,
in some cases, mathematical manipulations can be performed
to reduce the model complexity using exact or approximate
relations [24]. In such cases, the number of parameters of the
models can be usually reduced in terms of new parameters
defined as combinations of some of the original parameters.

The plan of this paper is as follows. In Sec. II we develop
a compartmental model of vector-borne transmitted diseases
with constant, but different, birth and death rates for the
vectors, which we will use to describe the case of growing
and decaying vector populations. For simplicity, the model as-
sumes that there is no host to host direct transmission and that
the development of the disease is faster than host recruitment,
which is also a realistic assumption in many cases, like plant
diseases. Section III contains the main results of the study.
In particular, we show that the asymptotic approach fails to
estimate the R0 of the model, overlooking outbreaks if some
conditions are fulfilled. Here we provide an alternative method
to compute R0 based on the average number of secondary
host infections produced by a primary infected host in one
generation. It turns out that the validity of the asymptotic
approach depends, among other things, on some timescales of
the model. Furthermore, we discuss and apply some approxi-
mations that allow us to reduce the model in favor of simpler
ones, with both fewer compartments and fewer parameters. In
particular, we show that if some of the parameters fulfill cer-
tain conditions, it is possible to reduce the original model with
five compartments and four parameters to a SIR model, with
three compartments and two parameters. It is expected that
model reductions like this one significantly help in solving
possible problems of parameter unidentifiability that plague
these models. It is interesting to note that a model in which

FIG. 1. Schematic representation of the model in Eq. (2). Boxes
are the compartments in which the population is divided, solid arrows
represent changes in state (so transitions between compartments),
and dashed arrows depict the crossed interaction between hosts and
vectors.

hosts do not interact directly, but only through vectors, in
a certain limit becomes described as if hosts would infect
directly one to each other, which is assumed in some studies
without suitable confirmation. Finally, the main concluding
remarks of the study are presented in Sec. IV.

II. THE MODEL

The compartment model for vector-borne diseases that we
will use to illustrate the points to be discussed in this study
consists of five compartments, three of which describe the host
population (susceptible, SH , infected, IH , and removed, RH ),
while the other two describe the vector population (suscepti-
ble SV and infected vectors, IV ). Thus, we consider that the
pathogen affects only the hosts and do not consider exposed
compartments. In addition, no direct host to host or vertical (or
mother to offspring for vectors) transmission is assumed. The
model could be also generalized to include an exposed host
compartment and the above mentioned transmission modes,
which would hinder the theoretical analysis without alter-
ing the qualitative conclusions of the study. Finally, for the
host population we consider neither recruitment nor natural
death, and then the total host population, NH , is constant,
NH = SH + IH + RH . Finally, we assume that infected hosts
do not have a mechanism to combat the disease and become
susceptible again. These assumptions are reasonable in the
case of many phytopathologies.

The model is defined according to the following processes:

SH + IV
β→ IH + IV , IH

γ→ RH ,

SV + IH
α→ IV + IH , SV

μ→ ∅, IV
μ→ ∅, (1)

which are graphically described in Fig. 1, being the birth of
new susceptible vectors described as a source term. Thus, the
host-vector compartmental model is written as

ṠH = −βSH Iv/NH ,

İH = βSH Iv/NH − γ IH ,

ṘH = γ IH ,

Ṡv = δC − αSvIH/NH − μSv,

İv = αSvIH/NH − μIv, (2)
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where the crossed nonlinear terms, SxIy, are written divided
by the total host population, NH , which corresponds to the
so-called standard incidence, which differs from the purely
bilinear form known as mass action incidence [25].

The model describes infection of susceptible hosts, SH , at
a rate β through their interaction with infected vectors, Iv ,
while susceptible vectors, Sv , are infected at a rate α through
their interaction with infected hosts IH . Infected hosts exit the
infected compartment at rate γ , while infected vectors stay
infected the rest of their lifetime, as we consider that the
pathogen does not affect them, as is customary. Vectors die
naturally (or disappear from the population by some mech-
anism) at rate μ and are born (appear) at a constant rate δ

being susceptible. The constant term C sets the scale of the
stationary value of the vector population. Figure 1 shows an
schematic representation of the model, and we refer to [17]
for a similar model of vector-borne diseases. However, the
model in [17] includes exposed compartments and direct host
to host transmission, but assumes that the birth and death rate
of vectors are identical, and thus, the population does not
change with time and stays as fixed by the initial condition.

A. Preliminary analysis of the model

From Eq. (2) it is straightforward to verify that the popu-
lation of hosts remains constant over time, NH = SH + IH +
RH , while the vector population fulfills

Ṅv = Ṡv + İv = −μ(Sv + Iv ) + δC = −μNv + δC, (3)

with the solution

Nv (t ) = δ

μ
C +

(
Nv (0) − δ

μ
C

)
e−μt . (4)

From Eq. (4) one can write the stationary value for the vector
population, N∗

v ,

N∗
v = lim

t→∞ Nv (t ) = δ

μ
C. (5)

Thus, if the initial population of vectors is below (above) the
stationary value, the vector population will grow (decrease)
until it reaches the stationary value. On the other hand, if
Nv (0) = N∗

v = δC/μ, the initial population of vectors is al-
ready at the stationary state. The initial condition for the
vector population can be written in terms of its stationary
value (5), Nv (0) = f N∗

v , where both f < 1 and f > 1 are
possible, so that one gets

Nv (t ) = N∗
v [1 + ( f − 1)e−μt )]. (6)

We note that vector-borne disease models that assume
constant vector populations (e.g., [17]) can be recovered by
setting δ = μ and C = Nv (0), so that any initial condition for
the vector population is stationary, i.e., Ṅv = 0 in Eq. (3) and
Nv (t ) = Nv (0). We note that our model describes populations
with an asymptotic stationary vector population and cannot
describe periodic vector populations.

III. RESULTS

A. The effect of nonstationary vector populations
into the epidemic threshold and disease dynamics

Let us start with the cases in which any initial condition
for the vector population is stationary and the total vector
population remains unchanged. This will happen when the
birth δ and death μ vector rates are identical, independently
on the initial condition of the vector population, or the case
in which the initial condition of the vector population is al-
ready at its stationary value, Nv (0) = N∗

v , independently of
the values of δ and μ. In such a case, the initial disease-free
state of the model, given by IH (0) = Iv (0) = 0, is a fixed point
(equilibrium state) of the dynamical system (2) independently
of the other initial conditions for the host and vector popu-
lations. This allows the definition of the basic reproduction
number, R0, using standard methods such as linear stability
analysis or the next-generation matrix (NGM) method [16]
(see Appendix A).

In other cases, the total vector population will vary with
time provided that the initial condition, Nv (0), is not identical
to the asymptotic value at large times, N∗

v . In these cases, an
initial disease-free state is not an equilibrium (fixed point) of
the model. However, in the literature it is customary to apply
the standard techniques, i.e., NGM, to compute R0 using the
vector population in the asymptotic state, that is the post-
pandemic disease-free equilibrium [26–30]. The use of these
methods is supported by the fact that the asymptotic dynamics
of the model converges to the dynamics of the subsystem
where the vector population is stationary [31,32]. In both
cases the basic reproduction number is given by

R0 = βα

μγ

SH (0)

NH
2 N∗

v . (7)

As usual, R0 accounts for the number of secondary infections
produced by an infected individual in one generation and
controls the threshold behavior of the model: for R0 < 1 the
epidemic dies out, and for R0 > 1 an outbreak occurs. By one
generation we refer to the typical time in which new infections
can be produced, being the generation time in our model

tg = 1/γ + 1/μ. (8)

Now we will show that Eq. (7) is not always predictive
about the onset of the epidemic. In Fig. 2 the final size of the
epidemic, R∞/NH , is plotted as a function of R0, where R∞
is the number of dead individuals at the end of the epidemic.
Figures 2(a)–2(d) show that Eq. (7) does indeed regulate the
onset of an epidemic when the initial vector population is in
its stationary value or below it. This result is general and does
not depend on the timescales of the system, 1/γ and 1/μ,
and so all curves in these panels behave similarly. In contrast,
Figs. 2(e) and 2(f) show that Eq. (7) does not predict the onset
of epidemic outbreak when the initial vector population is
larger than the stationary value. Thus, for R0 < 1 [computed
using Eq. (7)] severe outbreaks appear, yielding mortalities
even above 80% of the total population. However, one can
observe that as μ is increased, or γ decreased, the predictive
power of Eq. (7) is progressively recovered.

Thus, only if the vector population reaches its stationary
value before infected hosts have produced new infections
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FIG. 2. Numerical verification of the predictive power of the basic reproduction number relation by plotting the final size of the epidemic,
R∞/NH , as function of R0. In panels (a) and (b) the initial vector population is in the stationary value, in panels (c) and (d) is below, N∗

V /10,
and in panels (e) and (f) above, 10N∗

V . Panels (a), (c), and (e) show realisations for different γ values with a fixed μ = 1 baseline value. Panels
(b), (d), and (f) show realizations for different μ values with a fixed γ = 1 baseline value.

can the onset of an epidemic be characterized by Eq. (7).
Let us discuss separately the cases f > 1 and f < 1, with
Nv (0) = f N∗

v , namely, when the initial vector population is
above and below its stationary value, that is, decaying and
growing vector populations towards the asymptotic state.

If f > 1 Eq. (6), the time to approach the stationary value,
t∗, is

(1 + ε)N∗
v = N∗

v [1 + ( f − 1)e−μt∗
], (9)

where ε → 0 is a small parameter controlling the amount by
which the vector population differs from its asymptotic value
at time t∗. Thus, the time to approach the stationary value,
with precision ε, is given by

t∗ = − 1

μ
ln

(
ε

f − 1

)
= 1

μ

∣∣∣∣ln ε

f − 1

∣∣∣∣, (10)

where the last equality assumes that the small parameter ε

satisfies ε < ( f − 1) > 0.
If the vector population reaches its stationary value before

infected hosts have had time to generate new infections, then
R0 as determined from Eq. (7) is a good prediction of the onset
for an epidemic, which is equivalent to the condition that t∗ is
much smaller than the host’s infectious period, t∗ � 1/γ ,

1

γ
� 1

μ

∣∣∣∣ln ε

f − 1

∣∣∣∣ or
μ

γ
�

∣∣∣∣ln ε

f − 1

∣∣∣∣. (11)

Otherwise, Eq. (7) will not be predictive of the epidemic
onset, and as shown in Figs. 2(e) and 2(f) one may have
outbreaks with a substantial final size with R0 < 1.

In the case of growing vector populations, f < 1, if R0 < 1
an outbreak cannot occur at all, because R0 is calculated with
the asymptotic population, N∗

v , that is larger than the vector

population at any finite time, Nv (t ) < N∗
v ∀t , and so the thresh-

old condition is never attained. In the R0 > 1 case the behavior
will be richer, and it will depend on the initial condition,
Nv (0). One can define an instantaneous basic reproductive
number,

R(i)
0 (t ) = βα

μγ

SH (0)

NH
2 Nv (t ) = R0

Nv (t )

N∗
v

, (12)

using Nv (t ) instead of N∗
v , with R(i)

0 (t ) < R0 ∀t because the
vector population grows. In particular, if R(i)

0 (0) > 1 there will
be an outbreak occurring for short times, and the population
of infected hosts will start growing. If instead, Ri

0(0) < 1,
and as R0 > 1 with R0 being calculated with the asymptotic
state, there must be an intermediate time, say, tD, for which
R(i)

0 (tD) = 1. Thus, from t > tD an outbreak will occur, not
initially but after a finite time, that induces a delay in the
outbreak, and the infected host population will start growing.

The difference between the original and the delayed dy-
namics stems from the waiting time to reach R(i)

0 = 1, tD, plus
the nonlinear effect associated with a new initial condition for
the epidemic outbreak at tD. Thus, in the case that R0 > 1 and
R(i)

0 (0) < 1, from Eq. (12) and Eq. (6) we can analytically ap-
proximate the delay as the time needed to reach R(i)

0 (tD) = 1,

1 + ( f − 1)e−μtD = 1

R0
, (13)

which yields the relation

tD = − 1

μ
ln

[
1 − R0

( f − 1)R0

]
, (14)

where the argument of the logarithm is always positive be-
cause R0 > 1 and f < 1. Equation (14) is valid only if
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FIG. 3. Numerical study of the delay induced by growing vector populations. (a) Comparison of host’s dynamics for a stationary vector
population ( f = 1) and a growing vector population ( f = 10−5). (b) Time delay as function of f for different values of the basic reproduction
number R0. (c) Time delay as function of the vector natural death rate. (d) Time delay as function of the basic reproduction number, R0, with
f = 10−5.

f < 1/R0, for R(i)
0 (0) = f R0 < 1, as if otherwise R(i)

0 > 1 the
outbreak would already occur initially.

From Eq. (14) one can see that when the initial vector
population is far enough from its stationary value, f → 0, the
delay saturates to a constant value, instead of increasing, that
is,

lim
f →0

tD = 1

μ
ln

(
R0

R0 − 1

)
. (15)

In addition, for increasing values of the basic reproduction
number, R0, the delay tends to vanish, and from Eq. (15), this
is

lim
R0→∞

tD = 1

μ
ln(1) = 0, (16)

where the limit f → 0 is taken simultaneously to guarantee
that R(i)

0 (0) = f R0 < 1. On the other hand the delay, tD, scales
with the vector’s lifetime

tD ∼ 1

μ
= τv. (17)

Figure 3(a) shows an example of the time delay caused in
the host’s dynamics when the vector population grows from
an initial condition far from the stationary value. In Fig. 3(b)
we can qualitatively observe that all the predicted properties
of the delay are fulfilled, namely, the time delay saturates for
low f values and decreases with increasing R0. Although the
analytical expression (black dashed line) is clearly not exact
due to nonlinear effects, Eq. (14) captures the basic trends of

the time delay, tD. This is clear from Fig. 3(c), which shows
that the delay scales with 1/μ, and in Fig. 3(d), which shows
that the delay tends to 0 in the limit R0 → ∞, in agreement
with the prediction of Eq. (16).

B. The basic reproduction number for nonstationary
vector populations

As shown in the previous section, traditional methods to
compute the basic reproduction number fail in the case of
epidemic models with decaying vector populations, f > 1,
unless the timescale of vector population fulfills the strong
inequality condition (11), as illustrated in Sec. III A. Here
we introduce an effective, average definition of R0, useful
to predict the epidemic onset for vector-borne diseases with
decaying vector populations, i.e., the case where traditional
methods fail. It is defined as the average number of infections
produced by an infected individual in one generation [Eq. (8)],

R0 = 〈
Ri

0(t )
〉∣∣tg

0 = R0

[
1 − 1

τ
( f − 1)(e−τ − 1)

]
= R0F ,

(18)

where τ = 1 + μ/γ and F accounts for the effect of the de-
caying vector population on the stationary R0 [see Appendix B
for the full derivation of Eq. (18)].

A first observation is that R0 > R0 always (for f > 1). This
stems from the fact that τ = 1 + μ/γ > 1, so that e−τ − 1 <

0, and f − 1 > 0, which yields F > 1. This discussion un-
ravels why standard methods fail to predict the onset of an
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FIG. 4. Numerical verification of the expression for the basic reproduction number for vector-borne diseases with decaying vector
populations (18). Final size of the epidemic as a function of the basic reproduction number: (a) linear scale; (b) logarithmic scale. Phase
space trajectories: (c) IH/NH vs Iv/Nv (0) and (d) IH/NH vs SH/NH , where an initial condition IH (0)/NH = 0.01, SH (0)/NH = 0.99, and
Iv (0)/NV (0) = 0 has been used for the three cases. μ = γ has been used in all the simulations.

epidemic under decaying vector populations. Another impor-
tant point is that if μ/γ � 1, which implies τ � 1,

lim
τ�1

F = lim
τ�1

[
1 − 1

τ
( f − 1)(e−τ − 1)

]
= 1 + f − 1

τ
, (19)

and if furthermore τ ∼ μ

γ
� ( f − 1) then F → 1 and R0 →

R0. This is in agreement with the discussion in Sec. III A
showing that the R0 computed from standard methods works
if μ � γ .

Figures 4(a) and 4(b) contrast numerically the validity
of Eq. (18) to predict the final size of the epidemic as a
function of the general basic reproduction number, R0, in
linear and logarithmic scale, respectively. We observe that,
independently of the initial condition of vectors, the outbreak
occurs for R0 > 1. However, we may notice that for large
values of the initial condition of vectors the final size of
the epidemic grows more slowly, so that larger values of R0 are
needed to produce a proper outbreak. This can be explained
by the fact that for R0 slightly above the threshold, R0 = 1, and
large values of f = Nv (0)/N∗

v , infections are produced only in
the transient period of the dynamics, as R0 < 1. That is, while
the vector population is decaying to its stationary value, the
vectors are able to produce new infections, but once the vector
population reaches the stationary value, the epidemics stops.
This transmission mechanism is radically different from that
of vector-borne diseases with stationary vector populations in
which the prepandemic disease-free state is an equilibrium of
the system. The phase-space plots in Figs. 4(c) and 4(d) show
that the time-averaged basic reproduction number R0 is able

to accurately predict the conditions under which the infected
host population will grow, in contrast with R0 computed in the
post-pandemic fixed point. In essence, for R0 > 1 the infected
host population, IH , grows before reaching the absorbing state,
IH = Iv = 0, while for R0 < 1 the infected host population is
monotonically decreasing. We note that Eq. (18) is similar
to the time-averaged basic reproduction number presented
in [33] for the periodic case, which is a first-order approxi-
mation to the true basic reproductive number [34].

C. Fast-slow approximation

The original 5D Eq. (2) model is certainly not amenable to
mathematical analyses due to its high phase-space dimension-
ality and the fact that it depends on four parameters. Moreover,
in a real-case application, if the parameters conforming the
model are not known, the model could suffer from parameter
unidentifiability. However, some approximations can be per-
formed to reduce the mathematical complexity of the model,
such as a fast-slow (or adiabatic) approximation.

If the timescale of the vector population evolution is much
faster than that of the infected hosts, which is expected to
be a good approximation in many practical cases, the vector
population will almost instantaneously adapt to its stationary
value. Thus, if 1/μ � 1/γ , or equivalently if γ /μ � 1, we
can rewrite the time derivative of the vector-infected popula-
tion as

ε İv = α

μ
Sv

IH

NH
− Iv, (20)
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FIG. 5. Numerical verification of the timescale approximation [Eq. (21)] with NH = 100, α = γ = 1. β is chosen such that R0 = 3.
(a) μ = 1, (b) μ = 10, (c) μ = 100. Panel (d) shows a comparison between the approximate and original models for the parameters used
in (c), where the approximated models are expected to represent well the original one.

where time has been rescaled to t ′ → γ t and ε = γ /μ is a
small parameter. Then İv can be neglected and the infected
vector population can be obtained from the relationship

Iv ≈ α

μ

SvIH

NH
. (21)

Substituting Eq. (21) into the original system (2) and the
identity Nv (t ) = Sv (t ) + Iv (t ), considering the conditions for
which the timescale approximation is valid, μ � γ , implies
that the vector population will reach its stationary value al-
most instantaneously, so that Nv (t ) ≈ N∗

v , and we obtain the
following reduced system:

ṠH = −β ′ SH IH

λNH + IH
,

İH = β ′ SH IH

λNH + IH
− γ IH ,

ṘH = γ IH , (22)

where β ′ = βN∗
v /NH and λ = μ/α.

Moreover, if f �= 1 the above mentioned timescales rela-
tionship must fulfill μ

γ
� | ln ε

f −1 | [cf. Eq. (11)] and not only
μ

γ
� 1. It is important to notice that the presence of direct

host-to-host transmission would simply rescale the coefficient
β ′, and the SIR reduction (22) would keep its validity.

In Fig. 5 we numerically verify the validity of the presented
fast-slow approximation. As expected, we observe that the
approximation breaks down for μ ∼ γ [Fig. 5(a)], while as μ

becomes larger than γ the approximation improves Fig. 5(b),
and it becomes quantitative when μ � γ [Fig. 5(c)]. Finally,

we show in Fig. 5(d) a comparison between the dynamics of
the hosts using both the original and the approximated model
using the same parameters than in Fig. 5(c), where the results
of both models are expected to converge.

D. Reduction to a SIR model

In addition to the previous condition, γ /μ � 1, if one has
that λNH � IH also holds (which is indeed plausible in this
limit) (22), then the model can be written as a standard SIR
model,

ṠH = −βeff
SH IH

NH
,

İH = βeff
SH IH

NH
− γ IH ,

ṘH = γ IH , (23)

where βeff = β ′

λ
= βαN∗

v

μNH
.

In Fig. 6 we show the validity of the reduced models (22)
and (23). Figure 6(a) shows that the SIR-like model [Eq. (22)]
works when the timescale approximation can be performed
(as μ/γ � 1), but the SIR model fails when the condition
λNH � IH is not fulfilled. Conversely, in Fig. 6(b) we show
that as λNH � IH is fulfilled, then the SIR model perfectly
matches the original model. Finally, Fig. 6(c) shows the de-
crease in the mean squared error of the approximation as the
condition (11) is fulfilled for different values of f .
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FIG. 6. Comparison between the original model and the reductions, Eq. (22) (SIR-like) and Eq. (23) (SIR) with N = 100, μ/γ = 103, and
f = 1. β was chosen such that R0 = 3. (a) λ = 1, (b) λ = 103, (c) mean-squared error between the original model and the SIR approximations
as function of the ratio μ/γ and f .

IV. CONCLUSIONS

In the present work we have analyzed several features of
a compartmental deterministic model for vector-borne dis-
eases with three compartments for hosts and two for vectors,
that does not consider either direct host to host or vertical
transmission. The goal is to study the behavior of the model
in the case that the vector population is not stationary. In
this case, the prepandemic disease-free state is not a fixed
point (equilibrium state) of the dynamical system, and, in
principle, the methods that are customarily used to determine
the basic reproduction number, R0, do not work. This is so
because these methods determine the onset of an outbreak by
performing a linear stability analysis of the disease-free state,
assuming that it is a fixed point of the model. A common
assumption made in the literature is to determine R0 from the
asymptotic state for the vectors (if it is not an extinction state),
a fixed point of the model.

We have analyzed several initial conditions of the vector
population, characterizing different regimes. In the case that
the initial condition for the number of vectors is below the
asymptotic state, implying that the vector population overall
grows, then R0 as determined from the asymptotic state cor-
rectly predicts the existence (or not) of an epidemic outbreak,
but with a temporal delay in its appearance. This result con-
trasts with the situation in which the initial state is above the
asymptotic state, with an overall decrease in the vector pop-
ulation. In this case R0 determined from the asymptotic state
may fail badly, predicting no outbreak while a large fraction of
the population might get infected. We present a simple, albeit
useful, generalization of R0 that is able to give a reasonable
prediction of the epidemic threshold for decaying populations,
including the case in which vectors become extinct, a case in
which the asymptotic estimation to determine R0 cannot be
applied.

Compartmental models of vector-borne diseases usually
have many compartments and parameters, which can lead to
a problem of parameter unidentifiability. The model analyzed
here is not an exception, and when applied to real-world cases
many different combinations of the parameters could be able
to reproduce the available data. Thus, in order to facilitate
the application of the model to experimental data, we have
studied a useful fast-slow (or adiabatic) approximation that
allows us to reduce the model if the parameters fulfill certain

conditions. In particular, our study shows that under quite
realistic assumptions (the typical timescale of host’s infection
and death is much slower than vector timescales) it is possible
to obtain a reduced SIR model. We recall that this reduction
implies that, under these assumptions, the process by which
hosts (that could be immobile) get infected through the action
of vectors is equivalent to a direct interaction among hosts.

The deterministic compartmental model analyzed here,
with some modifications, is a clear candidate to study many
vector-borne diseases, in particular phytopathologies. Further-
more, in the case of parameter unidentifiability the model
reductions performed in this work could be useful to solve this
issue. In any case, this description is still idealized, as com-
partmental models imply a well-mixed assumption in which
space is not explicitly described. This kind of representation
is not always applicable to real-world scenarios although are
useful as a first approximation. Thus, future research should
focus on the integration of space and vector mobility in the
model to account for more realistic situations.
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APPENDIX A: CALCULATION OF R0 FROM
STANDARD METHODS

The standard methods of calculation of R0 are based in the
linear stability analysis of the disease-free equilibrium, either
directly, through the linear analysis of the fixed point, that
yields the stability condition from which R0 can be obtained,
or using the next-generation method (NGM) [16] that provides
directly R0 by solving a suitable linear problem. Customar-
ily these methods are applied to a prepandemic disease-free
equilibrium, but as there is no such state in the case of non-
stationary populations, here a similar approach is applied to a
post-pandemic or asymptotic disease-free equilibrium.
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1. Linear stability analysis

In order to perform the linear stability analysis of the fixed
point (IH = Iv = 0) we first need to compute the Jacobian
matrix, J ,

J =

⎛
⎜⎜⎜⎜⎝

−β Iv
NH

0 0 −β SH
NH

β Iv
NH

−γ 0 β SH
NH

0 −α Sv

NH
−α IH

NH
− μ 0

0 α Sv

NH
α IH

NH
−μ

⎞
⎟⎟⎟⎟⎠. (A1)

Then we evaluate the Jacobian at the fixed point (or disease-
free equilibrium, DFE), yielding

J|DFE =

⎛
⎜⎜⎜⎜⎝

0 0 0 −β

0 −γ 0 β

0 −α C
NH

δ
μ

−μ 0

0 α C
NH

δ
μ

0 −μ

⎞
⎟⎟⎟⎟⎠, (A2)

where SH = NH has been considered.
The eigenvalues of Eq. (A2) are

λ0 = 0,

λμ = −μ,

λ± = − (γ + μ)

2
± 1

2

√
(γ − μ)2 + 4βα

C

NH

δ

μ
. (A3)

It is straightforward to see that all eigenvalues are real and
the stability of the disease-free equilibrium is determined by
the sign of the eigenvalues. λμ = −μ < 0 as μ is defined pos-
itive, so in order to discuss the stability of this fixed point, we
need to study the λ± eigenvalues. λ− is always negative, but
λ+ changes sign depending on the values of the parameters.
The threshold condition λ+ = 0 leads to

λ+ = 0 ⇒ βα

γμ

C

NH

δ

μ
= 1. (A4)

So, for βα

γμ
C

NH

δ
μ

< 1 ⇒ λ+ < 0 the fixed point is stable and

for βα

γμ
C

NH

δ
μ

> 1 ⇒ λ+ > 0 a perturbation will grow in the
direction of the eigenvector associated with λ+. Thus, this
threshold defines the basic reproduction number,

R0 = βα

γμ

C

NH

δ

μ
. (A5)

If instead of SH = NH one considers any initial condition
of hosts, SH (0), the basic reproduction number is given by

R0 = βα

γμ

C

NH

δ

μ

SH (0)

NH
. (A6)

2. Next-generation matrix method

The previous result can also be obtained by means of the
NGM method, which is explained in detail in [16]. Basically
the method is based on decomposing the Jacobian in the form
J = T + �, where T is the transmission part, which describes
the production of new infections, and � the transition part,
which describes changes of state (including death). Then it
can be proved [16] that the basic reproduction number R0 is

given by the spectral radius (i.e., the largest eigenvalue) of the
(next-generation) matrix K = −T�−1:

K = −T�−1 =
(

βα

γμ
C

NH

δ
μ

β

μ

0 0

)
(A7)

with

T =
(

0 β NH
NH

0 0

)
, � =

( −γ 0

α C
NH

δ
μ

−μ

)

and − �−1 =
(

1
γ

0
α

γμ
C

NH

δ
μ

1
μ

)
.

The basic reproduction number is the spectral radius of this
matrix, so

det(K − σI) = 0 ⇒
∣∣∣∣

βα

γμ
C

NH

δ
μ

− σ
β

μ

0 −σ

∣∣∣∣
= (−σ )

(
βα

γμ

C

NH

δ

μ
− σ

)
= 0 .

Solving for σ one obtains the solutions

σ1 = βα

γμ

C

NH
, σ2 = 0. (A8)

Therefore, the basic reproduction number is

R0 = βα

γμ

C

NH

δ

μ
. (A9)

If instead of SH = NH one considers any initial condition
of hosts, SH (0), the basic reproduction number is given by

R0 = βα

γμ

C

NH

δ

μ

SH (0)

NH
. (A10)

APPENDIX B: CALCULATION OF R0 FOR
NONSTATIONARY VECTOR POPULATIONS

We extend the computation of R0 in the case of nonsta-
tionary and nonperiodic vector populations by following the
natural definition of basic reproductive number. Thus, R0 is
computed by averaging the number of secondary infections
produced by an infected individual along one generation,
which is equivalent to averaging the instantaneous definition
of R0, namely, Ri

0, over one generation,

R0 = 〈
Ri

0(t )
〉∣∣tg

0 = R0

N∗
v

〈Nv (t )〉∣∣tg
0 = R0

N∗
v

1

tg

∫ tg

0
Nv (t ) dt, (B1)

where the integral in Eq. (B1) is solved as∫ tg

0
Nv (t ) dt =

[
N∗

v t − 1

μ
(Nv (0) − N∗

v )e−μt

]tg

0

× N∗
v tg − 1

μ
(Nv (0) − N∗

v )[e−μtg − 1]. (B2)

Thus, the basic reproduction number for nonstationary vector
populations is given by

R0 = R0

N∗
v

{
N∗

v − 1

μtg
[Nv (0) − N∗

v ][e−μtg − 1]

}
, (B3)
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where the generation time, tg, is Eq. (8). Equation (B3) can be
rewritten as

R0 = 〈
Ri

0(t )
〉∣∣tg

0 = R0

[
1 − 1

τ
( f − 1)(e−τ − 1)

]
= R0F , (B4)

where τ = 1 + μ/γ and F is the expression in brackets,
which accounts for the effect of the decaying vector popu-
lation on the stationary R0.

In our approach, a generation is defined as the time elapsed
in the following sequence of processes: (1) a host individual
becomes infected; (2) the infected host passes the disease
to a susceptible vector; (3) the infected vector dies. Basi-
cally, the time elapsed from the first to the last process is
the time in which new infections can be produced, i.e., tg
[Eq. (8)].
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