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A B S T R A C T

The state of the art of epidemic modelling in terrestrial ecosystems is the compartmental SIR model and
its extensions from the now classical work of Kermack–Mackendrick. In contrast, epidemic modelling of
marine ecosystems is a bit behind, and compartmental models have been introduced only recently. One of
the reasons is that many epidemic processes in terrestrial ecosystems can be described through a contact
process, while modelling marine epidemics is more subtle in many cases. Here we present a model describing
disease outbreaks caused by parasites in bivalve populations. The SIRP model is a multicompartmental model
with four compartments, three of which describe the different states of the host, susceptible (i.e. healthy), S,
infected, I, and removed (dead), R, and one compartment for the parasite in the marine medium, P, written
as a 4-dimensional dynamical system. Even if this is the simplest model one can write to describe this system,
it is still too complicated for both direct analytical manipulation and direct comparison with experimental
observations, as it depends on four parameters to be fitted. We show that it is possible to simplify the model,
including a reduction to the standard SIR model if the parameters fulfil certain conditions. The model is
validated with available data for the recent Mass Mortality Event of the noble pen shell Pinna nobilis, a disease
caused by the parasite Haplosporidium pinnae, showing that the reduced SIR model is able to fit the data. So,
we show that a model in which the species that suffers the epidemics (host) cannot move, and contagion
occurs through parasites, can be reduced to the standard SIR model that represents epidemic transmission
between mobile hosts. The fit indicates that the assumptions made to simplify the model are reasonable in
practice, although it leads to an indeterminacy in three of the original parameters. This opens the possibility
of performing direct experiments to be able to solve this question.
1. Introduction

Marine organisms, like their terrestrial counterparts, can serve as
hosts for a diversity of parasites and pathogens present in the ecosys-
tem, which are directly responsible for disease outbreaks. Disease
induced mortality affects not only the host population, but can cas-
cade through the whole ecosystem, altering its structure and func-
tioning (Ward and Lafferty, 2004). Furthermore, climate change can
increase the spread range and impact of parasites and pathogens (Burge
et al., 2014). In fact, marine infectious diseases are recently increasing
due to climate change and other anthropogenic pressures, like pollution
and overfishing (Lafferty et al., 2004). This, in turn, threatens many
valuable ecologically habitats and can also result in substantial eco-
nomic losses in e.g. aquaculture (Lafferty et al., 2015). Analysing the
impact of these events at appropriate scales (spatial and temporal) and
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biological organisation levels (species, populations and communities)
is crucial to accurately anticipate future changes in marine ecosystems
and propose adapted management and conservation plans (Pairaud
et al., 2014). Thus, there is a strong need to address the mechanism
of disease propagation in marine organisms.

However, the state of the art of epidemiological studies in marine
ecosystems lags behind that of terrestrial ecosystems (Harvell et al.,
2004). Contact and vector-borne based infectious diseases of terrestrial
vertebrates and their epidemiology are typically studied using varia-
tions of the classical formulation of Kermack and McKendrick (Kermack
and McKendrick, 1927, 1932, 1933), the SIR model. Among other
things, this formalism allows to understand why epizootics spread and
stop, as the propagation of a disease is a threshold phenomenon (An-
derson, 1991), regulated by the now commonplace 𝑅0 dimensionless
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number. Within this framework the initiation of epidemic transmission
occurs when an infected individual is in close contact with a susceptible
host or through a transmission vector, as typically pathogens can only
survive for a very limited time outside the host in an aerial environ-
ment. On the other hand, as air is typically a much harsher medium
for pathogens than water, the sea is expected to host a large number of
pathogens (viruses, bacteria and parasites) for a relatively long time.
The longer life span of pathogens in a water medium, together with
the increased buoyancy arising from the different physical properties of
seawater and air, coupled to the existence of marine currents that can
transmit pathogens for long distances away, allows diseases to spread
faster and reach further distances in marine environments compared to
epidemics in terrestrial systems (Cantrell et al., 2020). As a result, the
possible long-term transmission of parasites by currents in marine en-
vironments make them more prone to suffer from persistent zoonotics
compared to terrestrial ecosystems, where for an epidemic outbreak to
occur the presence of an initial infected host (or vector) is necessary
within a susceptible population. Until quite recently, marine zoonotics
were mostly studied using different models compared to terrestrial
diseases and it was not even clear whether the same tools could be
applied (McCallum et al., 2004). The abundance of pathogens in marine
ecosystems is one of the reasons why proliferation models, that do
not focus on transmission and assume a widespread occurrence of the
pathogen and a rapid transmission problem, have been most popu-
lar in the field (Powell and Hofmann, 2015). In fact, compartmental
models are starting to be used only recently in the study of marine
epizootics (Bidegain et al., 2016b).

An important subset of marine organisms are sessile, e.g. bivalves,
which means that they cannot move. In the case of sessile terrestrial
organisms disease transmission occurs mostly through vectors, insects
that transmit the pathogens causing the disease. Instead, in marine
ecosystems disease transmission is most often waterborne, in particular
in passive water filtering feeders, as is the case of bivalves. Recently,
some compartmental models considering the pathogen population have
been recently proposed to study particular bivalve epidemics (Bidegain
et al., 2016a,b, 2017). In the present work we analyse a model that
is aimed to describe disease transmission from an infected immobile
host to a susceptible one of the same species through waterborne
parasites, that are explicitly described. The model is closely related to
the SIP model introduced in Bidegain et al. (2016b). In this first study
we analyse in detail the properties of the mean-field version of the
model, that aims to describe spatially homogeneous (i.e. well mixed)
populations. The well mixed approximation will be valid whenever the
mean distance among hosts is smaller than the mixing length of the
parasites before they get inactivated or absorbed. The model is written
such that waterborne transmission is the only mechanism by which
one infected immobile host can infect a healthy one, and, thus, does
not describe infection through direct contact. It is also assumed that
the infected hosts, as invertebrates, do not have immune memory, and
that the probability that an infected individual recovers is small and
can be neglected. Thus, the model is not adequate to study infection of
highly aggregated molluscs (like some mussels) or other passive filters
like corals, as for these hosts one should also include the possibility of
infection through direct contact.

A very timely case study of such emerging epidemics is the noble
fan mussel (or pen shell) Pinna nobilis. This fan mussel is the largest
ndemic bivalve in the Mediterranean Sea, and is under a serious
xtinction risk due to a Mass Mortality Event (MME) that has occurred
hroughout the whole Mediterranean basin very recently (García-March
t al., 2020; Zotou et al., 2020; Vázquez-Luis et al., 2017). Right
efore this MME, it was distributed across a wide type of habitats
ncluding coastal and paralic ecosystems at depths between 0.5 to
0m (Butler et al., 1993; Prado et al., 2020). In open coastal waters,
he distribution of the species is mainly associated with seagrass mead-
ws, typically of Posidonia oceanica, which has been indicated as its
2

ptimal habitat (Hendriks et al., 2011). Its lifespan is up to 50 years in i
favourable conditions and its size can get up to 1.2m, placing it among
the largest bivalves of the world (Cabanellas-Reboredo et al., 2019).
These fan mussels play a crucial ecological role in their habitat, as P.
nobilis individuals filter water, thus retaining a large amount of organic
matter from suspended detritus, contributing to water clarity (Trigos
et al., 2014). Furthermore, it is a habitat-forming species, because its
shell provides a hard-surface within a soft bottom ecosystem, which
can be colonised by different benthic species, augmenting biodiver-
sity (Cabanellas-Reboredo et al., 2019). In addition, at very dense
populations, the species can function as an ecosystem engineer, creating
biogenic reefs (Katsanevakis, 2016).

Despite P. nobilis populations have greatly declined due to anthro-
pogenic activities in the 20th century (Vázquez-Luis et al., 2017), the
ongoing MME is the most worrying and widespread threat to P. nobilis
throughout the Mediterranean Sea. As a consequence, the species has
been declared as critically endangered (IUCN, 2019). Although differ-
ent aetiological agents have been proposed, including Mycobacteria
and other bacteria (Carella et al., 2019; Šarić et al., 2020; Scarpa
et al., 2020), there is evidence that the main cause of this mortality
is the protozoan Haplosporidium pinnae (Darriba, 2017; Catanese et al.,
2018; Box et al., 2020), a new species that belongs to the genus Hap-
losporidium, one of the four genera of the protist order Haplosporida,
where it has been found that other Haplosporidian parasites are behind
the extensive mortality of several oyster species (Burreson and Ford,
2004; Arzul and Carnegie, 2015). Life stages include uninucleate and
binucleate cells, plasmodia, and spores. A group of experts following
up the event predicted a high risk that the disease would be spread by
marine currents through the Mediterranean basin, which could cause
the extinction of the species (Cabanellas-Reboredo et al., 2019) as it
is endemic. This has helped to better understand the spread of the
disease, and identified surface currents as the main factor influencing
local dispersion, whereas environmental factors influence the disease
expression, which seems to be favoured by temperatures above 13.5 ◦C
nd a salinity range between 36.5 and 39.7 psu.

In summary, we introduce and study in detail the properties of the
ean-field version of a general compartmental model to study ma-

ine epidemics for bivalve populations, namely passive filtering sessile
nvertebrate hosts infected through waterborne parasites. There are
wo main hypotheses, the first one that a population level description
i.e. without the consideration of spatial effects) is able to describe
ell the dynamics of the epidemic when the typical distance between

he hosts is smaller than the mixing length of parasites. A second
ssumption is that the host becomes infected with some probability,
ut that there is not a critical parasite load in the infection process.
fter presenting the full SIRP model, then three different reductions
re discussed, one exact, an approximate reduction of the former and
third reduction based on a timescale approximation. The study is

losed with a validation with the available experimental data for the
nfection process of Pinna nobilis kept in tanks. We wish to point out,
hat being a highly endangered and protected species, the reported
ata correspond to an unintended experiment that cannot be repeated,
nd maybe these data represent the only opportunity to estimate the
undamental parameters of the model. In addition, the setup in which
he Pinna nobilis were kept in tanks, represent themselves the ideal
mplementation of the conditions under which the mean-field model
IRP is valid. We believe that the model can be most useful in the rapid
haracterisation of emergent marine epidemics if the right data from a
ell mixed system are available.

. The SIRP model

.1. Model structure and initial considerations

In this work we analyse the SIRP model, a deterministic multi-
ompartmental mean-field model, continuous in time and unstructured

n spatial or age terms, to study infection in bivalve populations. In
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particular, we stress that the model as it is written describes spatially-
homogeneous populations. Compartmental models are the most fre-
quently used class of models in terrestrial epidemiology (Diekmann
et al., 2013), and originated in the classic study of SIR models by
Kermack and McKendrick (1927). The use of compartmental models in
the study of infectious processes in marine systems is quite rare until
very recently (Harvell et al., 2004). As already advanced in Section 1,
there are relevant features in the description of epidemic processes
in marine ecosystems that are different with respect to the case of
terrestrial ecosystems (McCallum et al., 2004), and their study in ma-
rine environments is dominated so far by proliferation models (Powell
and Hofmann, 2015), which do not address the transmission of the
pathogen. See (Bidegain et al., 2016b) for a discussion of several
compartment models for the study of marine epizootics.

Compartmental models of diseases in terrestrial ecosystems caused
by microparasites (i.e. viruses, bacteria and protozoans) do not con-
sider a compartment to describe the dynamics of the parasite (May
and Anderson, 1979), describing just the different stages of the host.
Infection typically occurs in 2 ways: (i) as a contact process, in which
he microparasite is transmitted directly from a an infected host, I,
y contact or through air in close proximity, to a susceptible host, S;
ii) through a vector, that has acquired the microparasite by biting an
nfected host, I, and passes the microparasite to a susceptible host, S.
n the first case one can describe the infection process through some
robability that the individuals come close, while in the second it is
ery relevant to describe the vector mobility, and at least 2 compart-
ents, susceptible and infected vector, are typically needed. Once the
icroparasite enters the host, it proliferates inside it, so the infection
rocess can be described by using compartments for susceptible indi-
iduals, S, infected individuals, I, and possible exposed individuals, E.
n particular, transmission in terrestrial sessile organisms (e.g. plants)
s generically vector-borne. In the case of marine ecosystems, infection
ypically occurs through water-borne parasites, in particular in filter-
eeders sessile organisms, while vector-transmitted diseases are much
ess frequent. Parasites may be transported by diffusion, sea currents,
r even active motion (i.e. if they have flagella). In any case, infection
etween sessile hosts is not through direct contact, but instead through
he production and excretion of parasites by infected individuals and
he assimilation by filtering of parasites by a healthy (susceptible) host.
o, parasites are produced and excreted to the marine medium, in
hich they stay infective until they become deactivated (i.e. die) or
re absorbed by hosts. In a way, in parasite transmitted marine diseases
arasites have a dual role: they are not only agents that induce infection
ut also act as vectors that transmit disease from an immobile infected
ost to a susceptible one.

The SIRP model is a general mean-field compartmental model to
escribe epidemic transmission through water-borne parasites, that we
hink is specially adequate to describe epidemic transmission in passive
ilter feeders, like many bivalves. We exclude the case of colonies
n which individuals are in close proximity, e.g. mussels, corals, etc,
n which direct contact could be relevant and should be included in
he model. In the SIRP model hosts are described through 3 different
ompartments, as in the SIR model, that represent different evolution
tages of the disease: a susceptible class of healthy individuals that may
ontract the disease, 𝑆, an infected class of individuals that may pass
he disease through excretion of the parasite, 𝐼 , and a class of removed
namely dead) individuals, 𝑅, that cannot be infected any more and
hat cannot transmit the disease plus an extra compartment, 𝑃 , for
he parasite population in the medium. It is important to note that
nvertebrates do not develop long-term immunity in the mammalian
ense (Powell and Hofmann, 2015), and so, no compartment of indi-
iduals ‘‘recovered with immunity’’ is considered. However, bivalves
ave a first line of defense with hemocytes being able to fight parasites
nd reduce their internal population. Nevertheless, available evidence
3

ndicates that the number of individuals that can achieve a full recovery t
s usually small and can be neglected. Instead, the population’s long-
erm response to disease, when it occurs, is through natural selection
or genotypes characterised by increased resistance to or tolerance
or the pathogen. As already advanced, the SIRP model includes a
ourth compartment that represents the parasite population in the
ater medium, whose population needs to be described explicitly.
n explicit compartment allows to model the situation in which the
opulation of parasites may evolve dynamically in time, although in
ection 2.3.3 we will consider the case in which the parasite population
ccommodates almost instantaneously to the infected host population,
nd the description of the parasite can be simplified.

Infection occurs when the host enters in contact with the parasite
n the marine medium. It involves a process of filtration of water by
he bivalve, and although a detailed representation has been discussed
n the literature (Bidegain et al., 2016a), in the current SIRP model
t is represented in an effective way. Infection is modelled through a
onlinear term, typical in compartmental models, but that now depends
n the parasite population and not on the population of the infected
ompartment, 𝐼 . In terrestrial epidemiology there are two alternative
ays to represent infection (Martcheva, 2015); (i) mass action inci-
ence, in which infection grows as the population gets larger, 𝛽𝑆𝐼 ; (ii)
tandard incidence, in which the infection is bounded as the population
rows, 𝛽𝑆𝐼∕𝑁 , where 𝑁 is the total (host) population. One must look
t these two choices as limit cases, with the possibility that in reality
he system is best described by an intermediate form, closer to one of
he limit cases, for example the modified SIR model in Brauer (1990)
n which the infection term has 𝑆+𝐼 in the denominator instead of the
otal population 𝑁 , because the 𝑅 compartment is removed. Modelling
nfection with an explicit representation of the parasite population en-
ounters the same basic dilemma about whether the incidence grows as
he (host) population increases or is bounded. We will model infection
s 𝛽𝑆𝑃 , where the two possibilities are equivalent to the two different
ncidences just mentioned: (i) 𝛽 = 𝛽; (ii) 𝛽 = 𝛽∕𝑁 , where 𝛽, the disease
ransmission rate, is a constant, that can depend at most on external
arameters, like temperature and salinity, but not on the variables
efining the model (populations of host compartments or parasites).
he model is valid considering both types of incidence, and in the case
tudy we will see which incidence seems more adequate in this case.

.2. General SIRP model

In this section we will write a mean-field compartmental model
o describe epidemics of immobile (sessile) hosts in a marine medium
hrough infection by a water-borne parasite. Being a mean-field model
mplies that the model is compartmental and does not include an
xplicit space dependence, and so, describes a well mixed system. The
ean-field model describes a spatially homogeneous system, but we
ope that it will be the basis for spatially inhomogeneous situations,
y adding suitable terms accounting for the mobility of the parasite.

It is also assumed that hosts become infected with some probability
hen exposed to a parasite, i.e., that there is not a critical parasite load
eeded for infection. The model is defined according to the following
eaction processes,

+ 𝑃
𝛽
→ 𝐼 + ∅ 𝐼

𝛾
→ 𝑅 𝐼

𝜆
→ 𝐼 + 𝑃 𝑃

𝜇
→ ∅ , (1)

hich is graphically summarised in Fig. 1.
According to the scheme in Fig. 1, we consider the host in 3

ossible states: susceptible, 𝑆, infected by the parasite, 𝐼 and removed
dead), 𝑅. Then we introduce the parasite population in the medium
water), 𝑃 . In the model, the disease transmission rate parameter 𝛽
egulates the infection rate of susceptible hosts and accounts, among
ther mechanisms, for the parasite intake rate. 𝛾 is the mortality of
nfected hosts, being the inverse of the typical mean time for an infected
ost to die; 𝜆 the production rate of parasites from infected hosts and
the inverse of the typical life time of the parasite. 𝜇 can be related
o several processes, like biological deactivation (or survival time) or
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Table 1
Model parameters description.

Variable Definition Parameter Definition

𝑆 Susceptible host 𝛽 Disease transmission rate
𝐼 Infected host 𝛾 Host mortality rate
𝑅 Removed host 𝜆 Production rate of parasites by

infected hosts
𝑃 Parasite in the medium 𝜇 Parasite deactivation/dilution

rate

other general losses, like dilution due to renewal of water in a closed
experiment, natural losses in open ecosystems or absorption by other
filter feeders. We are not considering the possibility of spontaneous
parasite gain, i.e. immigration, in this version of the model. A summary
of the model parameters can be found in Table 1. We do not consider
vital dynamics for the hosts, and this implies that the sum of the 3 host
ubpopulations is constant, 𝑁 = 𝑆+𝐼+𝑅, as the time scale of the disease
volution is much faster than the typical life cycle of fan mussels. The
odel is similar to the SIP presented in Bidegain et al. (2016b), except

or an extra term in �̇� , −𝛽𝑃𝑆, accounting for the fact that when a
arasite infects a host it is absorbed by the host. The conditions under
hich the SIRP model can be simplified to the SIP model are discussed

n Section 3.5.
In order to build the deterministic model we consider that the

opulation is large enough to neglect fluctuations and that it is well
ixed, so that spatial effects can be neglected. In this situation, we

onsider the infection process to be proportional to the number of par-
sites in the medium, so that the average number of contacts between
usceptible fan mussels and the average parasite population is given
y 𝑃𝑆, and, thus, the change in the number of susceptible fan mussels
akes the form �̇� = −𝛽𝑃𝑆, where the dot over a variable indicates a
ifferentiation with respect to time: �̇� = 𝑑𝑆∕𝑑𝑡.

Following this argumentation, the scheme in Eq. (1) and Fig. 1, one
an write the evolution equations of the SIRP model,

�̇� = −𝛽𝑃𝑆

�̇� = 𝛽𝑃𝑆 − 𝛾𝐼

�̇� = 𝛾𝐼

�̇� = 𝜆𝐼 − 𝛽𝑃𝑆 − 𝜇𝑃 .

(2)

odel (Eq. (2)) lives in the 4-dimensional (S,I,R,P) phase space, repre-
enting the variables the populations of individuals in the susceptible,
nfected and removed host compartments and of parasites, respectively.
hese variables could be redefined so that S, I and R represent propor-
ions of hosts in each compartment and P the population of parasites
er host.

The fixed points of Eq. (2) are determined by the conditions1 𝐼 =
= 0, to be fulfilled simultaneously. We will study the stability of the

ixed point defined by 𝑆(0), 𝐼(0) = 𝑃 (0) = 0 and 𝑅(0) = 𝑁 − 𝑆(0).
linear stability analysis of this fixed point reveals that it has two

ull eigenvalues, that stem from the condition 𝑁 = 𝑆 + 𝐼 + 𝑅 and the
onserved quantity of Appendix A. The first condition, 𝑆 + 𝐼 +𝑅 = 𝑁 ,
mplies that it is enough to consider two of the host populations, e.g. 𝑆
nd 𝐼 , as the third one can be obtained from the other two. The
mplications of the conserved quantity reported in Appendix A are more
ubtle, as it implies that fixed points are not isolated, as it happens in
rdinary dissipative dynamical systems, and there is an infinite number
a line of) fixed points for the final state of the epidemic, depending on
he initial conditions. This also implies that the phase space is foliated
y the conserved quantity, 𝐶 of Eq. (A.5), and every initial condition,
0, with a different value of 𝐶 leads to a different asymptotic condition,
∞, just as shown in Murray (2002) for the SIR model (cf. Fig. 10.1

1 We do not consider the trivial fixed point 𝑆 = 𝐼 = 𝑅 = 𝑃 = 0 that would
imply 𝑁 = 0 and 𝑃 = 0 at all time.
4

b

in op. cit.). The third eigenvalue, that is the largest of the two non-
zero eigenvalues, can be positive if 𝛽𝑆0𝜆 > 𝛾(𝛽𝑆0 + 𝜇) and negative if
the inequality is reversed, defining the conditional stability of the fixed
point. The fourth eigenvalue is always negative and all the eigenvalues
are always real (cf. Appendix B). The instability of the fixed point along
the third eigenvalue drives the beginning of the epidemic.

An extremely important result in epidemiology is the so-called basic
reproduction number, 𝑅0, a dimensionless number which represents the
number of secondary infections produced by a primary infection in a
fully susceptible population. 𝑅0 = 1 defines the threshold for epidemic
propagation: an epidemic will occur when 𝑅0 > 1, and the number of
infected individuals will grow, at an exponential rate in the early phases
of the epidemic (Castro et al., 2020), while if 𝑅0 < 1 the infection
will wane naturally. This quantity can be formally obtained making use
of the Next Generation Matrix (NGM) method (van den Driessche and
Watmough, 2008; Diekmann et al., 2010). Applying this formal method
to our system of ordinary differential equations (ODE’s) one obtains the
following relation for the basic reproduction number (cf. Appendix C),

𝑅0 =
𝜆

𝛾
(

1 +
𝜇

𝛽𝑆(0)

) . (3)

The threshold condition provided by 𝑅0 (Eq. (3)) is equivalent to
the linear stability condition for the third eigenvalue of the initial,
pre-epidemic, fixed point, as 𝛽𝑆(0)𝜆 > 𝛾(𝛽𝑆(0) + 𝜇) implies that this
eigenvalue is positive and the disease-free equilibrium state unstable
being this equivalent to 𝑅0 > 1 (cf. Appendix B). Thus, if 𝑅0 > 1 the
fixed point is unstable, and an epidemic will ensure if infected hosts, 𝐼 ,
or parasites, 𝑃 appear in the system. An epidemic will propagate until
the system reaches an stable fixed point, that signals the end of the
epidemic (cf. Appendix B).

2.3. Model reduction

The SIRP model lives in a 4-dimensional phase space and depends
on 4 parameters, what makes difficult to confront it with experimental
data. Thus, we will discuss here three alternative ways of reducing the
model. The first involves an exact reduction of the model, based on
the conserved quantity derived in Appendix A. The second reduction
consists of an approximation to the previous exact reduction, that turns
out to be equivalent to an exact reduction of a slightly simplified
model (without the −𝛽𝑆𝑃 term in the equation of �̇� ). The third one is
based on an approximation valid if the system parameters fulfil certain
conditions.

2.3.1. Exact reduction of the SIRP model
From the conserved quantity derived in Appendix A, it is possible

to write the parasite population in the SIRP model as a function of the
host states as follows,

𝑃 (𝑆, 𝐼) = −𝜆
𝛾
(𝑆 + 𝐼) +

𝜇
𝛽
ln(𝑆) + 𝑆 + 𝐶(0) , (4)

where 𝐶(0) = 𝑃 (0) + 𝜆
𝛾
(𝑆(0) + 𝐼(0)) −

𝜇
𝛽
ln(𝑆(0)) − 𝑆(0).

Substituting Eq. (4) into the general SIRP model of Eq. (2) we
obtain the following nonstandard SIR model,

�̇� =
𝜆𝛽
𝛾
𝑆 (𝑆 + 𝐼) − 𝜇𝑆 ln(𝑆) − 𝛽𝑆2 − 𝑆𝛽𝐶(0)

�̇� = −
𝜆𝛽
𝛾
𝑆 (𝑆 + 𝐼) + 𝜇𝑆 ln(𝑆) + 𝛽𝑆2 + 𝑆𝛽𝐶(0) − 𝛾𝐼

�̇� = 𝛾𝐼 .

(5)

Although using the conserved quantity yields an exact reduction
rom a 4D dynamical system to a 3D one, the number of independent
arameters and initial conditions remain unchanged, i.e. they still
epend on 4 parameters and 3 independent initial conditions. Thus,
lthough useful, (5) is not ideal when trying to fit experimental data,
nd this is the reason for trying a further approximation to Eq. (5) to

e discussed next.
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Fig. 1. SIRP model flow diagram. The model variables are represented by capital letters: susceptible hosts (𝑆), infected hosts (𝐼), dead hosts (𝑅) and the population of parasite
(𝑃 ). Arrows represent the processes in the model with their rates indicated next to them and blue rings represent parasites. The flow follows the scheme in Eq. (1), that leads to
the system of differential equations in Eq. (2).
2.3.2. Further approximation to the exact reduction
A further approximation to Section 2.3.1, that is less restrictive and

expected to be valid in a broader parameter range than the time-scale
approximation presented in Section 2.3.3 is possible. This approxima-
tion reduces the number of free parameters by one, what is useful in
fitting available data. The approximation consists of neglecting the 𝑆
term in Eq. (4), what is possible if 𝜆∕𝛾 ≫ 1 and also 𝜇 ln𝑁∕(𝛽𝑁) ≫
1, as 𝑆(𝑡) decreases monotonically with time and is, at most, 𝑁 at
the initial time. Interestingly, this approximation is equivalent to the
simplification of the equation for �̇� in (2) so that the −𝛽𝑆𝑃 is skipped,
what yields exactly the SIP model of Ref. Bidegain et al. (2016b). This
reduced model has an exact conserved quantity, , that differs from
that of the SIRP model in the linear 𝑆 term (cf. Appendix A). Using
this approximation one can write,

�̇� = 𝜆′

𝛾
𝑆(𝑆 + 𝐼) − 𝜇𝑆 ln(𝑆) − 𝑆̄(0)

�̇� = −𝜆′

𝛾
𝑆(𝑆 + 𝐼) + 𝜇𝑆 ln(𝑆) + 𝑆̄(0) − 𝛾𝐼

�̇� = 𝛾𝐼 ,

(6)

where 𝜆′ = 𝜆𝛽 and ̄(0) = 𝛽(𝑃 (0) + 𝜆∕𝛾(𝑆(0) + 𝐼(0) − 𝜇∕𝛽 ln𝑆(0))) =
𝛽(0) is a redefinition of the conserved quantity of the SIP model Eq.
(A.9), (0), a constant, such that it absorbs 𝛽 and all initial conditions
of the model. The result is that Eq. (6) depends on 3 parameters
and 1 constant, compared to Eq. (5) that depends on 4 parameters,
facilitating, thus, the use of the model to fit experimental data.

2.3.3. Model reduction through fast-slow separation
The third reduction of the 4-D dynamical model Eq. (2) makes the

assumption that the time scale of the parasite population dynamics is
faster than that of the hosts. This means that pathogen deactivation in
the medium must be faster than host mortality. In terms of the rates
associated to each of these processes, this means 𝜇 > 𝛾. Taking 𝜇 as
common factor in �̇� one can write,

𝜖�̇� = 𝜆𝐼∕𝜇 − 𝛽𝑆𝑃∕𝜇 − 𝑃 (7)

where 𝜖 = 1∕𝜇 is small, as 𝜇 is large. If furthermore 𝜇 ≫ 𝛽𝑁 and 𝜆 ≫ 𝛽𝑃
one arrives to,

𝑃 ≈ 𝜆 𝐼 . (8)
5

𝜇

Under this approximation the slow subsystem can be written,

�̇� = −𝛽′𝐼𝑆

�̇� = (𝛽′𝑆 − 𝛾)𝐼

�̇� = 𝛾𝐼 ,

(9)

that is equivalent to the classical SIR model with 𝛽′ = 𝛽𝜆∕𝜇 instead of
the infection rate 𝛽. The reduced 3-D model Eq. (9) from the original
4-D SIRP model Eq. (2) depends on 2 parameters instead of 4 as the
original model had and 1 initial condition, e.g. 𝐼(0) = 𝑁 − 𝑆(0) if
𝑅(0) = 0, and is much more amenable to be applied to the analysis
of experimental data, as shown in Section 4. Furthermore, 𝛾 could be
eliminated through a time rescaling, 𝑡 →= 𝑡′ = 𝛾𝑡 with a redefinition
of 𝛽′ → 𝛽′′ = 𝛽′∕𝛾 = 𝛽𝜆∕(𝜇𝛾), leaving the model as a function
of a single effective parameter. However, we will keep both 𝛽′ and
𝛾 for convenience when fitting the model to experimental data in
Section 4, as we would need to know anyhow 𝛾 in order to analyse
the experimental data. The validity of this approximation is checked
numerically in Section 3.

3. Numerical analysis of the model

The SIRP model cannot be solved analytically, so in the present
section we perform a numerical characterisation of the model.2 More-
over, we show the validity range of the performed approximations
to reduce the SIRP model to an effective SIR model. We start our
numerical analysis by investigating the relative influence of the model
parameters on some epidemiological quantities of interest: the basic
reproduction number (𝑅0), related to the existence of an epidemic
outbreak, continuing with the final state of the epidemic, given by the
final number of dead individuals (𝑅(∞)) and the maximum of infected
individuals (𝐼max) together with the time at which it occurs (𝑡max).

In order to identify the most influential parameters of our model
a Sensitivity Analysis (SA) will be performed. SA can be divided into
two classes: Local Sensitivity Analysis (LSA) and Global Sensitivity
Analysis (GSA). LSA represents the assessment of the local impact of
input factors variation on model response by concentrating on the
sensitivity in the vicinity of a set of factor values. Such sensitivity is

2 All numerical simulations of the dynamical system Eq. (2) have been
carried out using a Runge–Kutta 4th order method, with a temporal step
𝛥𝑡 = 0.001. Numerically stable results are obtain with 𝛥𝑡 ≤ 0.01.
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Fig. 2. Panel (a): Local sensitivity analysis of 𝑅0 for the baseline parameters 𝜆 = 1, 𝛾 = 1 and 𝜇 = 𝛽 = 𝑆0 = 1. The asterisks mark parameters for which the sensitivity index is not
constant, depending on, at least, another parameter. Panels (b–d): Local sensitivity analysis of 𝑅0 with respect to parameters with an asterisk, showing the different dependence
with a second parameter and the effect on the varying sensitivity index.
often evaluated through gradients or partial derivatives of the output
functions at these factor values, such that other input factors are
kept constant. Since epidemic models exhibit a threshold behaviour,
controlled by the dimensionless quantity 𝑅0, it is relevant to study its
robustness with respect to small perturbations by means of the LSA
explained above, as its analytical expression is known.

On the other hand, GSA will be applied to study the influence of
the parameters in the final state of the epidemic and the epidemic
peak by exploring a large domain of the parameter space. In turn,
GSA is the process of apportioning the uncertainty in outputs to the
uncertainty in each input factor over their entire range of interest.
A sensitivity analysis is considered to be global when all the input
factors are varied simultaneously and the sensitivity is evaluated over
the entire range of each input factor, in clear contrast to LSA. Within
GSA, first order indices are a measure of the contribution to the output
variance given by the variation of the parameter alone averaged over
variations in other input parameters while second order indices take
into account first order interactions between parameters. While LSA is
carried out analytically (if exact expressions are available), GSA is a
purely numerical approach. Further mathematical details on Sensitivity
Analysis can be found in Appendix D.

For all the sensitivity analysis performed in the following sections,
and in order to avoid ambiguities associated to the definition of 𝛽 as a
function of 𝑁 , we assume 𝑁 = 1, so that both possible incidences yield
𝛽 = 𝛽 and the numerical results are equivalent.

3.1. The basic reproduction number 𝑅0

To study the relevance of parameters involved in an epidemic
outbreak a LSA was performed. We analyse the local sensitivity of 𝑅
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0

through the normalised sensitivity index, so that the function 𝐹 (𝒑) of
Eq. (D.1) is substituted by the analytical expression of 𝑅0, Eq. (3).

Fig. 2(a) shows the sensitivity index for 𝑅0 for specific baseline
parameters, where 𝜆, 𝛽 and 𝑆0 contribute to increase the basic repro-
duction number while 𝛼, 𝛾 and 𝜇 contribute to decrease it, as expected.
Moreover, we can see that 𝜆 and 𝛾 are the most influential parameters
while 𝜇, 𝛽 and 𝑆0 depend on each other. These dependencies cause
varying influences on 𝑅0, which are fully depicted in panels Fig. 2(b–
d). It can be seen that the influence of 𝛽 increases with the increase of
𝜇 and the decrease of 𝑆0. Similarly, the importance of 𝑆0 increases with
𝜇 and decreases with 𝛽. On the other hand, the impact of 𝜇 increases
with the decrease of both 𝑆0 or 𝛽.

3.2. Final state of the epidemic

Another important quantity in epidemiology is the final state of
the epidemic, which can be characterised by the final number of dead
individuals, 𝑅∞. Within our general SIRP model it is not possible to find
an analytical expression of 𝑅(𝑡) so that we need to tackle the problem
numerically. To this end, we perform GSA for the final number of dead
individuals in order to determine the most influential parameters for
this quantity. In particular, we apply the Sobol method, discussed in
Appendix D. The Confidence Interval, CI, obtained in our study is less
than 1% of the index value, indicating a very high accuracy, therefore
it is not shown in the figures. The results of the explained procedure are
shown in Fig. 3, where the total order (black), first order (white) and
second order (grey) sensitivity indices for each of the model parameters
are detailed. It can be observed that 𝜇 has a slightly greater influence
than the other parameters with respect to the final number of dead
individuals. Note that the second order indices are larger than the first
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Fig. 3. Sensitivity indices (LSA) for the final number of dead individuals (𝑅∞) for
each one of the indicated parameters. The black bars represent the total order indices
of sensitivity while white (grey) colour represents the contribution of the first (second)
order indices.

order ones for all the parameters, which indicates a high influence
of the nonlinearities in our model, at least for the particular quantity
under study.

3.3. Maximum of infected individuals

A GSA of the maximum number of infected individuals, 𝐼max and
the time it occurs, 𝑡max is performed to study the influence of the model
parameters regarding these quantities. In this case, Fig. 4, 𝛾 has greater
influence in the epidemic peak than any of the other parameters, while
for the time at which the peak takes place, all the parameters have
basically the same influence. Again, the second order indices (the first
order interactions between parameters) account for most of parameter
sensitivity, in particular in the time of the epidemic peak, indicating
the high degree of nonlinearity of this effect.

3.4. Numerical verification of the fast-slow approximation

The parasite concentration approximation, based on a timescale
separation discussed in Section 2.3.3, is now verified by computational
means. The verification was performed using both mass action and
standard incidence, but for the sake of simplicity we show only the
results for the standard incidence case. Worth is to say that, mathe-
matically, changing from standard incidence to mass action involves
only a rescaling of the 𝛽 parameter, so that the numerical results are
invariant. Fig. 5 contains a comparison for 3 different values of the
parasite deactivation rate, 𝜇. It can be seen that the approximation
is poor when 𝜇 ∼ 𝛾, 𝛽𝑁 Fig. 5(a), as it could be expected. On the
other hand, the approximation is quite good when 𝜇 is one order of
magnitude larger than 𝛾 and 𝛽𝑁 Fig. 5(b), while it is extremely accurate
when 𝜇 is two orders of magnitude larger than 𝛾, 𝛽𝑁 , Fig. 5(c). The
figure also shows the numerical value of �̇� (pink dashdot), and it can
be checked how it becomes smaller as 𝜇 increases compared to 𝛾, 𝛽𝑁 ,
justifying the timescale separation of Section 2.3.3. Finally, Fig. 5(a–c)
also shows (dashed red line) the analytical value for 𝑃 (𝑆, 𝐼) derived
in Eq. (A.7), that, as expected, matches perfectly the result of the
numerical integration of Eq. (2).

3.5. Numerical verification of the model approximation from the exact
reduction

The numerical verification was performed for both mass action
and standard incidence, but for the sake of simplicity in Fig. 6 we
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show only the results for the standard incidence case. First, and as
it should be because it is an exact result, the exact reduction of the
SIRP model discussed in Section 2.3.1 matches perfectly the numerical
results obtained from the full model for all possible parameter values,
Fig. 6(a–c). Regarding the approximation to the exact reduction, one
can see how the approximation converges to the exact solution as
the parameters fulfil the conditions indicated in Section 2.3.2, namely
that both 𝛾∕𝜆 ≫ 1 and 𝜇 log(𝑁)∕ ̄𝛽𝑁 ≫ 1, becoming very accurate if
these ratios are larger than 1 by two orders of magnitude or more (cf.
Fig. 6(c)). We recall that in this case the SIRP model converges to the
SIP model of Bidegain et al. (2016b). Conversely, the approximation
is poor when any of these two ratios is of order 1 ((cf. Fig. 6(a))),
while Fig. 6(b) presents the result in an intermediate case, in which
the approximation is fair.

4. Model validation with data of the Pinna nobilis Mass Mortality
Event

In this section, the general SIRP model is validated against col-
lected data from the Pinna nobilis Mass Mortality Event. As explained
in Section 1, the disease is caused by the parasite Haplosporidium
pinnae and the hosts, P. nobilis, are sessile bivalves endemic of the
Mediterranean Sea. Thus, this epidemic is a perfect candidate to be
described by the SIRP model. In the model, parasite production occurs
only inside infected hosts, and parasites are released to the medium,
either through their respiratory or digestive system. The simultane-
ous occurrence of the different possible stages of the parasite (uni-
and bi-nucleate cells, multinucleate plasmodia, sporocysts and unin-
ucleate spores) in the same host individual is not common among
haplosporidans and makes H. pinnae different from previously known
haplosporidan species (Catanese et al., 2018). The occurrence of uni-
and binucleate stages suggest possible direct transmission from infected
to healthy fan mussels, as observed in B. ostreae and B. exitiosa (Hine,
1996; Culloty and Mulcahy, 2007; Audemard et al., 2014). Addition-
ally, the presence of spores (a dormant, resistant stage) could allow long
persistence in the environment and the hypothetical involvement of an
intermediate host as suggested for H. nelsoni and H. costale (Andrews,
1984; Haskin and Andrews, 1988; Powell et al., 1999). While unin-
ucleate cells are always detected in infected fan mussels, sporulation
has been only detected sporadically (Catanese et al., 2018). Thus,
we assume that infection occurs mostly through uninucleate (or binu-
cleate) cells by direct transmission (as the experimental observations
in captivity point out, see García-March et al. (2020)). We do not
consider disease transmission through other stages. We do not consider
spores, given the infrequent observation of spores and the current
lack of experimental information about spore transmission (that could
involve another intermediate host species). Regarding plasmodia and
sporocyst stages, these stages are too large to be released through the
epithelium. The distinction between uninucleate and binucleate cells
seems unnecessary at this level of representation, as these phases only
participate in parasite proliferation inside infected hosts, a process that
we consider in an effective way. Finally, the evidence of the time course
of the disease compared to the long life cycle of P. nobilis suggests host
vital dynamics (i.e. recruitment (reproduction) and natural death) can
be neglected.

After an epidemic outbreak that took place in Portlligat, in the
north east of Catalonia, 215 Pinna nobilis individuals were extracted
from their natural medium in order to be preserved as a genetic
reserve in several controlled water tanks of different institutions in
Spain (García-March et al., 2020). The institutions that participated
in this preservation effort were IFAPA, IEO, IRTA, IMEDMAR-UCV
and Oceanogràfic of Valencia. The original idea was to rescue the
individuals before infection, however, the subsequent evolution of the
rescued Pinna nobilis populations indicates that some individuals were
already infected at the time of extraction (and/or in contact with some
amount of the parasite transferred from sea water). This allowed the
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Fig. 4. Global sensitivity analysis for the maximum of infected individuals 𝐼max (a) and its time occurrence 𝑡max (b). The black bars represent sensitivity at all orders, while white
(grey) colour represents the contribution of the first (second) order indices.
Fig. 5. Numerical check of the approximate expression for the pathogen concentration, (Eq. (8)), 𝛽 = 1∕50 and 𝛾 = 1: (a) 𝜇 = 1; (b) 𝜇 = 10; (c) 𝜇 = 100, while 𝜆 is varied to
keep 𝑅0 = 2.5, defined in (Eq. (3)) (with 𝑆0 = 𝑁 = 50), i.e., 𝜆 = 5, 27.5, 252.5 respectively for (a)–(b)-(c), respectively. The blue solid line represents the numerically integrated
quantity, the red dashed line (superimposed to the blue solid one as they are identical) is the exact solution for this quantity, (Eq. (4)) and the green dotted line accounts for
the approximate expression from the timescale separation (Eq. (8)). The dash-dotted pink line represents the derivative of 𝑃 , �̇� , in the scaled time frame. Panel (d): Mean error
between the approximate and exact solutions for increasing 𝜇∕𝛾 = 𝜇∕𝛽.
opportunity to use the data of the time evolution of the epidemic in
the controlled water tanks, reported in García-March et al. (2020),
to evaluate the described SIRP model.3 The empirical data consists

3 Data used in this work with the purpose of validating and fitting parame-
ters for the SIRP model have been taken from the Supplementary Information
of García-March et al. (2020).
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of the proportion of survivors as a function of time in the controlled
water tanks with a temporal resolution of one month. Although the
temperature of water tanks was controlled, it was sharply lowered in
most of them when mortality started to appear within the population.
This was a last effort to keep the rest of the population safe and
alive, since keeping the temperature below approximately 13.5 ◦C
is a known strategy to preserve Pinna nobilis individuals as disease
expression is minimal (Cabanellas-Reboredo et al., 2019). Fortunately,
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Fig. 6. Numerical check of the exact model reduction along with the subsequent approximation shown in Section 2.3.1 with 𝑁 = 100, 𝛽 = 1∕100, 𝛾 = 1, (a) 𝜆 = 5, 𝜇 = 1.1; (b)
𝜆 = 50, 𝜇 = 20; (c) 𝜆 = 500, 𝜇 = 209. 𝑅0 = 2.38 for all the panels. The solid semitransparent lines represent the original 4D model, the dashed lines the exact reduction and
the dotted lines the approximate model from the exact reduction. Panel (d): Mean error between the approximate and exact solutions for increasing 𝜇 ln(𝑁)∕𝛽𝑁 and 𝜆∕𝛾 while
𝑅0 = 2.38 is kept constant.
two of the tanks kept its temperature approximately constant during
the full recorded time. This is the case of the tanks in IFAPA in Huelva
and the Oceanogràfic of Valencia (OCE), both Spanish institutes. These
water tanks have been selected to validate our model, maintaining
constant temperatures of 14 ◦C and 17 ◦C, respectively.

First we will fit the exact reduction of the SIRP model, assuming
𝜇 log(𝑁) ≫ 𝛽𝑁 and 𝜆∕𝛾 ≫ 1 as discussed in Section 2.3.2, namely
Eq. (6). This reduced model depends on three parameters (𝜆′, 𝜇, 𝛾)
and one constant, ̄(0), cf. Section 2.3.2, that is related to the initial
conditions of the model. The order of magnitude of the mortality rate
can be deduced from data, with an estimate value of 𝛾 ≈ 1 month−1. We
fix this parameter in order to give some biological information to our
model prior to the computational fit. We focus on the 𝑅 compartment,
as it can be retrieved directly from data in García-March et al. (2020).4
We use a box-constrained variant5 of the well known BFGS optimisation
algorithm (Fletcher, 2013) with a common L2 loss function, also known
as Residual Sum of Squares (RSS).6 By running this algorithm one ob-
serves that the optimal parameters tend to be the ones in the boundary
of the box-constrained parameter space. Furthermore, if the box size is

4 The number of dead individuals can be obtained as 𝑅 = 𝑁 − 𝑆, where 𝑆
is the population of survivors and 𝑁 is the total number of individuals in the
tanks, 50 (IFAPA) and 5 (Oceanogràfic), respectively.

5 We constrain the optimisation because the unconstrained optimisation to
the full range of the parameters, i.e, from 0 to ∞ is not practical.

6 The algorithm is implemented within the Julia high-level program-
ming language (Bezanson et al., 2017) using the DifferentialEquations.jl
package (Rackauckas and Nie, 2017).
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increased (or decreased) the optimal parameters continue to be in the
boundary of the box-constrained parameter space. This indicates that
there exist several parameter combinations that optimally fit the data,
and the combination parameters found by the optimisation algorithm
are only marginally optimal with respect to other parameter values. The
locus (actually a valley) of marginal optimal parameters can be seen in
the right hand side panels of Fig. 7, where the cost function value of
the optimisation algorithm is plotted as heat map.

Now we reach the point regarding the dilemma between mass
action and standard incidence discussed in Section 2.1. If one does not
correct the 𝛽 parameter with the size of the host population, 𝑁 , that
is equivalent to assuming the mass action incidence 𝛽 = 𝛽, the values
that one would obtain for 𝛽′ = 𝛽𝜆∕𝜇 = 𝜆′∕𝜇 for both populations take
disparate values in both tanks: 𝛽′ = 0.046 for the IFAPA data set and
𝛽′ = 0.87 for the Oceanogràfic (OCE) data set, a factor of 19 between
them while their temperatures differ only by 3 ◦C. These numbers
indicate that the standard incidence is more reasonable, what amounts
to choosing 𝛽 = 𝛽∕𝑁 , where the final values of the reported parameter
𝛽′ should be multiplied by 𝑁 = 50 for the IFAPA tank and 𝑁 = 5 for
the OCE tank. The final result is then 𝛽′ = 2.28 and 𝛽′ = 4.36 for IFAPA
and OCE tanks, that are the values reported in Fig. 7, implying that an
almost twofold increase of the 𝛽′ parameter corresponds to an increase
of 3 ◦C. This relation is in good agreement with the typical changes in
rates of a wide range of organisms with a 3 ◦C change in temperature,
while a 19-fold change in the rate would imply at least a 30 ◦C change
in temperature (cf. Appendix E).

The fact that there is an infinite number of combinations of the
parameters that optimally fit the data suggests that, as two parameters
are slaved one to each other, that the model admits a further reduction.
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Fig. 7. Parameter estimation for the approximation from the exact reduction of the SIRP model (Eq. (6)) using data from IFAPA (panel (a)) and OCE (panel (b)) water tanks,
at 14 ◦C and 17 ◦C respectively. Left figures represent several fits of the model to empirical data of the number of dead hosts (𝑅(𝑡)) using different optimal combinations of the
parameters. Right figures are the RSS errors as a function of the input parameters, where the green dashed line represents the set of optimal combinations of the parameters with
𝑅𝑆𝑆 = 60, 0.8 for IFAPA and OCE, respectively.
This reduction corresponds exactly to the approximate SIR model de-
rived in Eq. (9), with the relationship 𝛽′ = 𝜆′∕𝜇, as anticipated. So,
this gives further corroboration to the use of the SIR model Eq. (9)
to fit 𝛽′ as the free parameter (fixing the value of 𝛾 and with 𝐼0 as
the initial condition determined by the fit). For consistency with the
previous fitting we expect to obtain 𝛽′ = 2.28 and 4.36 as the optimal
parameters for the IFAPA and OCE water tanks, respectively, and this
is the case.

Interestingly, as reduced model Eq. (9) has fewer parameters to fit
we can relax our initial assumption of 𝛾 = 1 month−1 and check how
the fit improves or worsens when varying 𝛾. In Fig. 8 a fit of the reduced
SIR model Eq. (9) is shown for the IFAPA (top) and Oceanogràfic
(bottom) controlled water tanks.7 Fig. 8(c–d) shows the 𝑅𝑆𝑆 error as 𝛾
is varied. It can be seen that for the IFAPA water tanks 𝛾 = 1.5 month−1

yields more accurate results, while for the Oceanogràfic water tanks
𝛾 = 1 month−1 remains optimum. This shows a decrease in the mean
removal time 1∕𝛾 for lower water temperatures, with the finite size
errors inherent to the OCE tank (as 𝑁 = 5). In the left panels the
simulated curve of dead individuals, 𝑅 compartment, as a function of
time for the optimal fitted parameters is confronted to the experimental
data, showing a remarkable agreement. With the optimum values of 𝛾,
in the IFAPA tank (now with 𝛾 = 1.5 month−1) a new value of 𝛽′ = 3.05
is obtained, implying a probably more reasonable ratio of 1.43 for 𝛽′ in
both tanks (it was 1.91 in the original fit). From the optimal parameters
we obtain the basic reproduction number, since 𝑅0 = 𝛽′∕𝛾 we have that
𝑅IFAPA
0 ≃ 2 and 𝑅OCE

0 ≃ 4, clearly above the epidemic threshold.

7 The 𝑁 correction corresponding to standard incidence has already been
applied to these values.
10
Summarising, the SIRP model is able to fit two sets of experi-
mental data, agreeing with a standard incidence, according to which
the infection rate depends on the amount of parasites per pen shell
individual. Pinna nobilis individuals in the IFAPA experiment were
actually distributed in 4 tanks, and the standard incidence is compatible
with this experimental aspect. The temperature dependence of the
fitted parameters in this range (14 − 17 ◦C, appears to be compatible
(although experiments at different temperatures would be needed)
with an Arrhenius dependence of the infection parameters, also known
as Boltzmann–Arrhenius (Brown et al., 2004; Molnár et al., 2017),
that can be extended to account for the expect unimodal dependence
on temperature, with a maximum infectivity at a characteristic tem-
perature for the parasite (Molnár et al., 2017). Therefore, we can
assume that global change (or temperature shifts) is expected to have
complex effects on infectious diseases, causing some to increase, others
to decrease, and many to shift their distributions (Rohr and Cohen,
2020). In the particular case of pen shell mortality, our model results
suggest the proposed mechanism of lower disease expression at lower
temperatures. This might have direct consequences for the development
of the mortality event and offers a bleak perspective for the future and
specifically in the eastern Mediterranean basin, where the mortality
was observed later due to current patterns but average temperatures
tend to be higher than in the western part of the Mediterranean.

5. Conclusions

In this work we have analysed a compartmental model to study
marine epizootics for sessile hosts assuming infection by direct trans-
mission through waterborne parasites. Moreover, we have used data
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Fig. 8. Parameter fitting for the R compartment to model (Eq. (9)) using data from IFAPA (panel (a)) and Oceanogràfic (panel (b)). The left part of both panels of the figure
shows the optimal fit of the model to empirical data with 𝑅𝑆𝑆 = 10.9, 0.8 for IFAPA and OCE, respectively. The right panels show the variation of the 𝑅𝑆𝑆 error for some values
of 𝛾. The 𝛽′ values have been obtained assuming a standard incidence, as explained in the main text.
from the recent mass mortality event of Pinna Nobilis in the Mediter-
ranean Sea as a case study to validate our model. Compartmental
models are routinely used in the study of disease infection and prop-
agation in terrestrial ecosystems, including the study of the current
Covid-19 pandemic (see, e.g., Castro et al. (2020)). However, these
models are starting to be used only recently in the study of marine epi-
zootics (Bidegain et al., 2016b), while proliferation models have been
the most popular in the field (Powell and Hofmann, 2015). A reason
for the low popularity of compartment models in the study of marine
epizootics is that there are some aspects in its modelling that differ from
the now standard application to terrestrial ecosystems (McCallum et al.,
2004). An important difference is that, in principle, (micro)parasites
need to be modelled explicitly in marine ecosystems, while often they
are not included in the description in terrestrial ecosystems (May and
Anderson, 1979).

The SIRP model has 4 compartments and depends on 4 parameters,
so that it is not quite amenable to theoretical analysis. At the same
time, due to the large number of parameters of the model, using it
to analyse experimental observations can be cumbersome in practice
if the parameter values are unknown. Nevertheless, we have shown
three reductions of the model, one exact and two approximate ones,
that can be useful to overcome these limitations that are typically
present at the first stages of emergent epidemics. Indeed, the timescale
approximation is able to fit the collected data of our case study for
some optimal parameters, as shown in Section 4. This approximation
is particularly useful as it only depends on 2 parameters, the death rate
of infected hosts, 𝛾 and an effective infection rate, 𝛽′. Although this
approximation simplifies the fitting procedure, there is a price to be
paid in this analysis. The infection parameter, 𝛽, and the parameters
regulating proliferation, 𝜆, and deactivation/dilution of the parasite, 𝜇,
become entrained into a single effective parameter, 𝛽′. Thus, the full
11
understanding of the different effects at play in the system requires
further work. Furthermore, we have shown that an epidemic model
for immobile hosts can be reduced to the standard SIR model, which
assumes direct contact among the hosts, i.e. that the hosts are mobile.
This reduction is only valid when the time scale of the parasites is much
faster than that of the hosts, i.e. 𝜇 ≫ 𝛽𝑁, 𝛾. Thus, our work provides
a ground to apply the SIR model in marine epidemics of sessile hosts
that fulfil the required conditions.

In a world with many possible new epizootics, we believe that our
reduced model can be specifically useful to understand key features of
those emerging diseases characterised by the spreading of waterborne
parasites in a relatively fast way, provided that the temporal evolution
of the disease can be determined for, at least, some set of individu-
als. Thus, some of the key parameters can be fitted to the available
experimental data as shown in Section 4. Still, the fitted relevant
parameters may need to be supplemented with further information
or targeted experiments. We hope that this approach can be useful
in understanding emerging diseases in shellfish species of economic
not only ecological value, and also, with suitable modifications, in
aquaculture. It is noteworthy that our case study is a haplosporidan
waterborne parasite. In fact, waterborne haplosporidans have been
responsible for some of the most significant and consequential marine
disease epizootics on record and are considered the major pathogens
of concern for aquatic animal health shellfish industries around the
world (Arzul and Carnegie, 2015). The SIRP model is the simplest
model that one could think of having in mind its practical application,
but could be extended to incorporate further effects that are so far
described in an effective way.
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Appendix A. Finding a conserved quantity for the SIRP model

Starting with the SIRP model,

�̇� = −𝛽𝑃𝑆

�̇� = 𝛽𝑃𝑆 − 𝛾𝐼

�̇� = 𝛾𝐼

�̇� = 𝜆𝐼 − 𝛽𝑃𝑆 − 𝜇𝑃 ,

(A.1)

from the �̇� equation, 𝑃 can be written as follows,

𝑃 = − 1
𝛽
�̇�
𝑆

, (A.2)

and summing up the equations for �̇� and �̇� the following relation for 𝐼
s obtained

= −(�̇� + �̇�)∕𝛾 . (A.3)

Replacing Eqs. (A.2), (A.3) and the differential equation for �̇� in the
4th differential equation in Eq. (A.1) one obtains,

�̇� = −𝜆
𝛾
(�̇� + �̇�) + �̇� +

𝜇
𝛽

. �̇�
𝑆

(A.4)

As �̇�∕𝑆 = 𝑑(ln𝑆)∕𝑑𝑡, all terms in the previous equation are exact
differentials with respect to time, and the equation can be integrated
yielding,

𝑃 + 𝜆
𝛾
(𝑆 + 𝐼) − 𝑆 −

𝜇
𝛽
ln𝑆 = 𝐶 (A.5)

with the integration constant 𝐶, that is a conserved quantity, i.e., it
takes the same value at one time of the dynamical evolution of the
system. 𝐶 is related to the initial conditions by,

𝐶 = 𝑃 (0) + 𝜆
𝛾
(𝑆(0) + 𝐼(0)) −

𝜇
𝛽
ln𝑆(0) − 𝑆(0) = 𝑃 (0) + 𝜆

𝛾
(𝑁 − 𝑅(0))

−
𝜇
𝛽
ln𝑆(0) − 𝑆(0) (A.6)

It is possible to use Eqs. (A.5)–(A.6) to express one of variables as
function of the others, for example the parasite concentration 𝑃 as,

𝑃 (𝑆, 𝐼) = 𝑃 (0) − 𝜆
𝛾
(𝑆 + 𝐼 −𝑁 + 𝑅(0)) +

𝜇
𝛽
ln 𝑆

𝑆(0)
+ 𝑆 − 𝑆(0) , (A.7)

or equivalently as,

𝑃 (𝑆,𝑅) = 𝑃 (0) + 𝜆
[

𝑅 − 𝑅(0) +
𝜇𝛾

ln 𝑆
]

+ 𝑆 − 𝑆(0) (A.8)
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𝛾 𝛽𝜆 𝑆(0)
From Eq. (A.5), it is easy to show that the SIP model of Ref. Bidegain
et al. (2016b), that differs from the SIRP model in that the fourth
equation is simplified to �̇� = 𝜆𝐼 −𝜇𝑃 , has as exact conserved quantity,

𝑃 + 𝜆
𝛾
(𝑆 + 𝐼) −

𝜇
𝛽
ln𝑆 =  (A.9)

as the extra term in the SIRP model −𝛽𝑆𝑃 is equal to �̇� from the first
equation Eq. (A.1).

The SIR model has a conserved quantity (Murray, 2002), that in the
case of Eq. (9) takes the form,

𝐼 + 𝑆 −
𝛾
𝛽′

ln𝑆 = 𝐶 . (A.10)

Rewriting Eq. (A.5) in the alternative form,
𝛾
𝜆
𝑃 +

(

1 −
𝛾
𝜆

)

𝑆 + 𝐼 −
𝜇𝛾
𝜆𝛽

ln𝑆 = 𝐶 ′ (A.11)

t can be seen that if 𝜆 ≫ 𝛾 Eq. (A.11) reduces to Eq. (A.10), remem-
ering that in Eq. (9) 𝛽′ = 𝜆𝛽∕𝜇. The assumptions used to arrive to Eq.
A.10) in Section 2.3.3 where 𝜇 ≫ (𝛾, 𝛽), and taking into account the
xpression for 𝑅0 Eq. (3), that 𝜆 ≳ 𝜇 is most plausible to keep 𝑅0 above
he epidemic threshold (𝑅0 > 1).

ppendix B. Stability analysis of the fixed points of the SIRP
odel

Here we will assume the initial fixed point of our SIRP model, with
(0) = 𝑃 (0) = 0 right before the introduction of the infection, either
hrough 𝐼 or 𝑃 . We will assume that 𝑅(0) = 0, so that 𝑆(0) = 𝑁 . To
tudy the linear stability of the model we need to write the Jacobian,
hat takes the form,

=

⎛

⎜

⎜

⎜

⎜

⎝

−𝛽𝑃 0 0 𝛽𝑆
𝛽𝑃 −𝛾 0 𝛽𝑆
0 𝛾 0 0

−𝛽𝑃 𝜆 0 (𝛽𝑆 − 𝜇)

⎞

⎟

⎟

⎟

⎟

⎠

(B.1)

nd obtain the eigenvalues for both fixed points, where we have already
sed the standard incidence, 𝛽 = 𝛽∕𝑁 , from the evidence of the
alidation with experiments. For the pre-epidemic fixed point, the
acobian becomes,

0 0 0 𝛽𝑆(0)
0 −𝛾 0 𝛽𝑆(0)
0 𝛾 0 0
0 𝜆 0 (𝛽𝑆(0) − 𝜇)

⎞

⎟

⎟

⎟

⎟

⎠

(B.2)

atrix Eq. (B.2) has two null (0) eigenvalues and a pair of eigenvalues
iven by,

1,2 = − 1
2

(

𝛾 + 𝜇 + 𝛽𝑆(0) ±
√

𝛾2 + 𝜇2 +
(

𝛽𝑆(0)
)2 + 2𝜇𝛽𝑆(0) − 2𝛾𝜇 − 2𝛾𝛽𝑆(0) + 4𝜆𝛽𝑆(0)

)

(B.3)

from which one can determine that the fixed point is unstable whenever

𝜆𝛽𝑆(0) > 𝛾(𝜇 + 𝛽𝑆(0)) (B.4)

and stable if the inequality is reversed. It can be easily shown that Eq.
(B.4) is equivalent to 𝑅0 > 1, with 𝑅0 given by Eq. (3).

The final point of the epidemic, 𝑆(∞), can be found by solving the
transcendental equation,
(

𝜆
𝛾
− 1

)

𝑆(∞) −
𝜇
𝛽
ln(𝑆(∞)) = 𝐶 (B.5)

where 𝐶 is determined from the initial conditions (Eq. (A.6)) and
𝐼(∞) = 𝑃 (∞) = 0. (Eq. (B.5)) has two roots, where 𝑆(∞) represents
the smallest one.
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Appendix C. Calculation of 𝑹𝟎 using the Next Generation Matrix
method

The so called Next Generation Method (NGM) is a method to obtain
𝑅0, the basic epidemiological quantity that measures the number of
secondary cases produced by a typical infected individual during its
entire period of infectiousness in a completely susceptible population.
It was discussed in Appendix B that 𝑅0 is related to the largest non-zero
eigenvalue, say 𝛬, of the fixed point corresponding to the infection-free
equilibrium. An outbreak occurs when 𝛬 > 0 (or equivalently when
𝑅0 > 1) and the NGM is an ingenious method to obtain 𝑅0 directly
in a reduced linear system. In more concrete terms, within the NGM
method 𝑅0 is the dominant eigenvalue of a suitably defined linear
operator (a linear matrix in a suitable basis). This operator is obtained
from a decomposition of the Jacobian, J of the infected/infecting
compartments (i.e. excluding susceptible and removed compartments)
in the form J = T+Σ, where T is the transmission part, that describes the
production of new infections, and Σ the transition part, that describes
changes of state (including death). Then, it can be proved (Diekmann
et al., 2010) that the basic reproduction number 𝑅0 is given by the
spectral radius (i.e. the largest eigenvalue) of the (next generation)
matrix K = −TΣ−1.

In the case of the SIRP model the decomposition is applied to the
2 × 2 Jacobian corresponding to the dynamical evolution of the (𝐼, 𝑃 )
infectious compartments, being the decomposition,

J =
(

−𝛾 𝛽𝑆0
𝜆 −(𝛽𝑆0 + 𝜇)

)

T =
(

0 𝛽𝑆0
0 0

)

Σ =
(

−𝛾 0
𝜆 −(𝛽𝑆0 + 𝜇)

)

where the 𝛽𝑃𝑆 term in �̇� is the only one that contributes to the
transmission matrix, as it is the only process involving infection, while
all the other terms in the dynamical equations of �̇� and �̇� imply
transitions (to another compartment, like 𝐼 → 𝑅 or birth and death
of 𝑃 ).

Then, the next generation matrix is given by,

K = −TΣ−1 =
⎛

⎜

⎜

⎝

𝜆𝛽𝑆0
𝛾(𝛽𝑆0 + 𝜇)

𝛽𝑆0
𝛽𝑆0 + 𝜇

0 0

⎞

⎟

⎟

⎠

⟹ 𝑅0 =
𝜆𝛽𝑆0

𝛾
(

𝛽𝑆0 + 𝜇
) ,

This result coincides with the expectation that 𝑅0 should correspond to
he number of hosts infected in a single generation by the appearance
f an infected host in a completely susceptible population. This can be
btained from the number of parasites produced by an infected host, 𝜆,

times the time in which the infected host is alive producing parasites,
1∕𝛾, multiplied by the number of infected hosts produced per parasite,
𝛽𝑆0, times the time the parasite is alive available to infect, 1∕(𝜇+𝛽𝑆0),
taking into account that parasites are inactivated at a rate 𝜇 and also
die when infecting at a rate 𝛽𝑆0, where this result assumes that the
susceptible population does not change from its initial value 𝑆0.

Appendix D. Sensitivity analysis

One particular way to analyse the local sensitivity (LSA) of a given
model function, 𝐹 (𝒑), for each of the parameters that conform it, 𝑝𝑖, is
through the normalised sensitivity indexes (Cariboni et al., 2007),

𝛺𝐹
𝑝𝑖
= 𝜕𝐹

𝜕𝑝𝑖

𝑝𝑖
𝐹
|

|

|
𝑝𝑖=𝑝0

. (D.1)

here the partial derivatives in Eq. (D.1) are determined analytically
n our case.

GSA works by studying the influence of a large domain of parameter
pace in the final state of the epidemic and in the epidemic peak. In
ur case this will be achieved by means of a variance based analysis,
nown as Sobol method (Sobol, 2001). This particular method provides
nformation no only on how a particular parameter alone influences
13

c

the model outputs (as happens with LSA), but also on the influence of
its interactions with other parameters. This information is organised in
what are known as Sobol indices, that have been implemented within
the Julia high-level programming language (Bezanson et al., 2017)
using the DifferentialEquations.jl package (Rackauckas and Nie, 2017),
and in particular through its subpackage DiffEqSensitivity.jl. This im-
plementation allows the user to sample the parameter space using
QuasiMonteCarlo methods and thus obtain confidence intervals (CI)
for the sensitivity indices, which are directly related to the committed
statistical error.

The total order indices are a measure of the total variance of the
output quantity caused by variations of the input parameter and its
interactions. First order (or ‘‘main effect’’) indices are a measure of the
contribution to the output variance given by the variation of the pa-
rameter alone, but averaged over variations in other input parameters.
Second order indices take into account first order interactions between
parameters. Further indices can be obtained, describing the influence of
higher-order interactions between parameters, but these are not going
to be considered. More detailed information about sensitivity analysis
can be found in Saltelli et al. (2004).

Appendix E. General rate change with temperature

In Gillooly et al. (2001) the metabolic rate of a wide variety of
organisms was studied, showing that the change in the metabolic rate
with temperature was similar among them. In particular, the natural
logarithm of the metabolic rate linearly depends on the inverse of
absolute temperature,

log(𝑅(𝑇 )) = 𝑎 ⋅
( 100

𝑇

)

+ 𝑏 (E.1)

and for all the analysed organisms they found that 𝑎 lies between −5
nd −10 and 𝑏 between 14 and 30. From their analysis, we can compute
he change in the rate for a given increase of temperature,

𝑅(𝑇 + 𝛥𝑇 )
𝑅(𝑇 )

= exp(𝑎 ⋅
( 100
𝑇 + 𝛥𝑇

)

+𝑏)∕ exp(𝑎 ⋅
( 100

𝑇

)

+𝑏) = exp(𝑎 ⋅ −1000
𝑇 + 𝛥𝑇

⋅
𝛥𝑇
𝑇

) .

(E.2)

Substituting 𝑇 = 287 K and 𝛥𝑇 = 3 K, that correspond to our available
ata (cf. Section 4) in Eq. (E.2), using both the upper and lower limit
f 𝑎, we obtain that the expected increase in the effective transmission
ate is between 1.2 to 1.4. This is far from the 19-fold increase that
e obtained with the mass action hypothesis in Section 4 while it is

n good agreement with either the 1.92 ratio we obtained for 𝛽 with
he reduction of Section 2.3.2 or the 1.43 ratio obtained with the fast-
low approximation of Section 2.3.3, both obtained using the standard
ncidence choice.

Fig. E.9(a) shows the change in the rate with an increase of 3
C for different base temperatures and for all the organisms analysed
n Gillooly et al. (2001), and using their fit. Note that for all temper-
tures between 0 ◦C and 30 ◦C the rate change lies between 1.2 and
.45. Fig. E.9(b) shows the change in the rate for different temperature
ncreases, with a base temperature of 𝑇 = 287K. Note that in order
o obtain a 19-fold increase the temperature change should be at least
f 30 ◦C.8 The temperature dependence of metabolic rates has been
eported in the context of epidemic parameters (Coelho and Bezerra,
006; Shapiro et al., 2017)

The behaviour of the metabolic rates re-analysed here has been also
ound experimentally in epidemic contexts such as Coelho and Bezerra

8 A temperature change of 30 ◦C could fall outside the range in which the
tudy of Gillooly et al. (2001) is valid. We just stress that a 19-fold rate change
s unlikely for the case of a 3 ◦C that correspond to the 2 data sets that we
ompare in this section.
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Fig. E.9. Graphical representation of change in the rate (ordinates) for: (a) different reference temperatures and a temperature increase of 3 ◦C; (b) different temperature increases
and a reference temperature of 14 ◦C. The black dotted line in (b) corresponds to a 19-fold increase in the rate.
(2006) and Shapiro et al. (2017), i.e. the increase of the rates with
temperature fulfil the ranges shown here.
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